2,507 research outputs found

    SUPERBOT: A Deployable, Multi-Functional, and Modular Self-Reconfigurable Robotic System

    Get PDF
    Abstract – Self-reconfigurable robots are modular robots that can autonomously change their shape and size to meet specific operational demands. Recently, there has been a great interest in using self-reconfigurable robots in applications such as reconnaissance, rescue missions, and space applications. Designing and controlling self-reconfigurable robots is a difficult task. Hence, the research has primarily been focused on developing systems that can function in a controlled environment. This paper presents a novel self-reconfigurable robotic system called SuperBot, which addresses the challenges of building and controlling deployable self-reconfigurable robots. Six prototype modules have been built and preliminary experimental results demonstrate that SuperBot is a flexible and powerful system that can be used in challenging realworld applications

    Route Swarm: Wireless Network Optimization through Mobility

    Full text link
    In this paper, we demonstrate a novel hybrid architecture for coordinating networked robots in sensing and information routing applications. The proposed INformation and Sensing driven PhysIcally REconfigurable robotic network (INSPIRE), consists of a Physical Control Plane (PCP) which commands agent position, and an Information Control Plane (ICP) which regulates information flow towards communication/sensing objectives. We describe an instantiation where a mobile robotic network is dynamically reconfigured to ensure high quality routes between static wireless nodes, which act as source/destination pairs for information flow. The ICP commands the robots towards evenly distributed inter-flow allocations, with intra-flow configurations that maximize route quality. The PCP then guides the robots via potential-based control to reconfigure according to ICP commands. This formulation, deemed Route Swarm, decouples information flow and physical control, generating a feedback between routing and sensing needs and robotic configuration. We demonstrate our propositions through simulation under a realistic wireless network regime.Comment: 9 pages, 4 figures, submitted to the IEEE International Conference on Intelligent Robots and Systems (IROS) 201

    Roles '07 – Proceedings of the 2nd Workshop on Roles and Relationships in Object Oriented Programming, Multiagent Systems, and Ontologies : workshop co-located with ECOOP 2007 Berlin, July 30 and 31, 2007

    Get PDF
    Roles are a truly ubiquitous notion: like classes, objects, and relationships, they pervade the vocabulary of all disciplines that deal with the nature of things and how these things relate to each other. In fact, it seems that roles are so fundamental a notion that they must be granted the status of an ontological primitive. The definition of roles depends on the definition of relationships. With the advent of Object Technology, however, relationships have moved out of the focus of attention, giving way to the more restricted concept of attributes or, more technically, references to other ob- jects. A reference is tied to the object holding it and as such is asymmetric – at most the target of the reference can be associated with a role. This is counter to the intuition that every role should have at least one counter-role, namely the one it interacts with. It seems that the natural role of roles in object-oriented designs can only be restored by installing relationships (collaborations, teams, etc.) as first-class programming concepts. By contrast, the relational nature of roles is already acknowl- edged in the area of Multiagent Systems, since roles are related to the interaction among agents and to communication protocols. However, in this area there is no convergence on a single definition of roles yet, and different points of view, such as agent software en- gineering, specification languages, agent communication, or agent programming languages, make different use of roles. Like its pre- decessor “Roles, an interdisciplinary perspective” (Roles’05) held at the AAAI 2005 Fall Symposium (see the website of the Symposium http://www.aaai.org/Press/Reports/Symposia/Fall/fs-05-08.php), this workshop aimed at gathering researchers from different dis- ciplines to foster interchange of knowledge and ideas concerning roles and relationships, and in particular to converge on ontolog- ically founded proposals which can be applied to programming and agent languages

    Swarm Robotics: An Extensive Research Review

    Get PDF

    Evaluating a Data Distribution Service System for Dynamic Manufacturing Environments: A Case Study

    Get PDF
    AbstractSmall and Medium sized Enterprises (SMEs) in Europe struggle to incorporate industrial robots in their production environments, while large enterprises use these robots for large batch production only. The paradigm shift from mass production to mass personalization decreases batch sizes and changes the approach to implementation of industrial robots in manufacturing environments. It also opens doors for SMEs to further incorporate robots in their production environments. The goal of this research is to evaluate the suitability of a data-centric, distributed, decentralized manufacturing system for cooperation between robots and humans. A case is presented featuring cooperation between robots and humans. A control system is proposed based on distributed intelligence and decentralized control, to handle the rapidly expanding complexity in dynamic manufacturing environments. The communication in such a distributed environment is provided by a Data Distribution Service system; an extendible, flexible approach to communication. Key issues that are encountered in implementing the cooperation into the current industrial environments are identified. The proposed control system is projected on the case and evaluated for application suitability and expected performance
    • …
    corecore