
Syddansk Universitet

A Domain-Specific Language for Programming Self-Reconfigurable Robots

Schultz, Ulrik Pagh; Christensen, David Johan; Støy, Kasper

Published in:
APGES 2007 - Automatic Program Generation for Embedded Systems - Workshop Proceedings

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (APA):
Schultz, U. P., Christensen, D. J., & Støy, K. (2007). A Domain-Specific Language for Programming Self-
Reconfigurable Robots. In APGES 2007 - Automatic Program Generation for Embedded Systems - Workshop
Proceedings. (pp. 28-36)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 10. Jan. 2017

http://findresearcher.sdu.dk/portal/en/publications/a-domainspecific-language-for-programming-selfreconfigurable-robots(6a371d70-e63e-11dc-9a76-000ea68e967b).html

A Domain-Specific Language for Programming
Self-Reconfigurable Robots

Ulrik P. Schultz, David Christensen, Kasper Støy
University of Southern Denmark

ABSTRACT
A self-reconfigurable robot is a robotic device that can change
its own shape. Self-reconfigurable robots are commonly built
from multiple identical modules that can manipulate each
other to change the shape of the robot. The robot can also
perform tasks such as locomotion without changing shape.
Programming a modular, self-reconfigurable robot is how-
ever a complicated task: the robot is essentially a real-time,
distributed embedded system, where control and communi-
cation paths often are tightly coupled to the current physical
configuration of the robot. To facilitate the task of program-
ming modular, self-reconfigurable robots, we have developed
a declarative, role-based language that allows the program-
mer to define roles and behavior independently of the con-
crete physical structure of the robot. Roles are compiled to
mobile code fragments that distribute themselves over the
physical structure of the robot using a dedicated virtual ma-
chine implemented on the ATRON self-reconfigurable robot.

1. INTRODUCTION
A self-reconfigurable robot is a robot that can change its

own shape. Self-reconfigurable robots are built from mul-
tiple identical modules that can manipulate each other to
change the shape of the robot [4, 9, 11, 14, 16, 18, 24, 23].
The robot can also perform tasks such as locomotion with-
out changing shape. Changing the physical shape of a robot
allows it to adapt to its environment, for example by chang-
ing from a car configuration (best suited for flat terrain) to a
snake configuration suitable for other kinds of terrain. Pro-
gramming self-reconfigurable robots is however complicated
by the need to (at least partially) distribute control across
the modules that constitute the robot and furthermore to
coordinate the actions of these modules. Algorithms for con-
trolling the overall shape and locomotion of the robot have
been investigated (e.g. [5, 21]), but the issue of providing a
high-level programming platform for developing controllers
remains largely unexplored. Moreover, constraints on the
physical size and power consumption of each module limits

Copyright the authors, APGES 2007, Oct. 4th 2007, Salzburg, Austria.
.

Figure 1: The ATRON self-reconfigurable robot.
Seven modules are connected in a car-like structure.

the available processing power of each module.
In this paper, we present a role-based approach to pro-

gramming a controller for a distributed robot system inde-
pendently of the concrete physical structure of the robot. A
role defines a specific set of behaviors for a physical module
that are activated when the structural invariants associated
with the role are fulfilled. Using the principle of distributed
control diffusion [17], the roles are compiled into code frag-
ments that are dynamically diffused throughout the physical
structure of the robot and activated where applicable. Our
programming language targets the distributed control dif-
fusion virtual machine (DCD-VM) running on the ATRON
modular, self-reconfigurable robot [11, 13]. Although the
compiler implementation is still preliminary, it is capable of
generating code for a complex example involving multiple
roles.

The rest of this paper is organized as follows. First, Sec-
tion 2 presents the ATRON hardware, discusses issues in
programming the ATRON robot, and describes the DCD-
VM. Then, Section 3 presents the main contribution of this
paper, a high-level role-based programming language for the
DCD-VM. Last, Section 4 presents related work and Sec-
tion 5 concludes and outlines directions for future work.

2. THE ATRON SELF-RECONFIGURABLE
ROBOT

2.1 Hardware
The ATRON self-reconfigurable robot is a 3D lattice-type

robot [11, 13]. Figure 1 shows an example ATRON car robot
built from 7 modules. Two sets of wheels (ATRON mod-

ules with rubber rings providing traction) are mounted on
ATRON modules playing the role of an axle; the two axles
are joined by a single module playing the role of “connector.”
As a concrete example of self-reconfiguration, this car robot
can change its shape to become a snake (a long string of
modules); such a reconfiguration can for example allow the
robot to traverse obstacles such as crevices that cannot be
traversed using a car shape.

An ATRON module has one degree of freedom, is spher-
ical, is composed of two hemispheres, and can actively ro-
tate the two hemispheres relative to each other. A module
may connect to neighbor modules using its four actuated
male and four passive female connectors. The connectors
are positioned at 90 degree intervals on each hemisphere.
Eight infrared ports, one below each connector, are used by
the modules to communicate with neighboring modules and
sense distance to nearby obstacles or modules. A module
weighs 0.850kg and has a diameter of 110mm. Currently 100
hardware prototypes of the ATRON modules exist. The sin-
gle rotational degree of freedom of a module makes its ability
to move very limited: in fact a module is unable to move
by itself. The help of another module is always needed to
achieve movement. All modules must also always stay con-
nected to prevent modules from being disconnected from the
robot. They must avoid collisions and respect their limited
actuator strength: one module can lift two others against
gravity. A module has 128K of flash memory for storing
programs and 4K of RAM for use during execution of the
program.

Other examples of self-reconfigurable robots include the
M-TRAN and the SuperBot self-reconfigurable robots [14,
18]. These robots are similar from a software point of view,
but differ in mechanical design e.g. degrees of freedom per
module, physical shape, and connector design. This means
that algorithms controlling change of shape and locomotion
often will be robot specific, however general software prin-
ciples are more easily transferred.

2.2 Software
Programming the ATRON robot is complicated by the

distributed, real-time nature of the system coupled with
limited computational resources and the difficulty of ab-
stracting over the concrete physical configuration when writ-
ing controller programs. General approaches to program-
ming the self-reconfigurable ATRON robot include meta-
modules [5], motion planning and rule-based programming.
In the context of this article, we are however interested in
role-based control. Role-based control is an approach to
behavior-based control for modular robots where the behav-
ior of a module is derived from its context [22]. The behavior
of the robot at any given time is driven by a combination of
sensor inputs and internally generated events. Roles allow
modules to interpret sensors and events in a specific way,
thus differentiating the behavior of the module according to
the concrete needs of the robot.

2.3 Distributed control diffusion
To enable dynamic deployment of programs on the ATRON

robot, we have developed a virtual machine that enables
small bytecode programs to move throughout a structure
of ATRON modules [17]. The virtual machine supports a
concept we refer to as distributed control diffusion: con-
troller code is dynamically deployed to those modules where

a specific behavior is needed. The virtual machine, named
DCD-VM, has an instruction set that is dedicated to the
ATRON hardware and includes operations that are typically
required in ATRON controllers. For example, the virtual
machine maintains an awareness of the compass direction
of each module and the roles of its neighbors, and specific
instructions allow this information to be queried. Moreover,
the virtual machine provides a lightweight and highly scal-
able broadcast protocol for distributing code throughout the
structure of ATRON modules, making the task of program-
ming controllers that adapt to their immediate surroundings
significantly easier.

The DCD-VM supports a basic notion of roles to indicate
the state of a module and to provide polymorphic dispatch-
ing of remote commands between modules, but at a very low
level of abstraction. There is no explicit association between
roles and behaviors, this currently has to be manually imple-
mented by the programmer. Moreover, initial experiments
with the virtual machine were performed by writing byte-
code programs by hand, since no higher-level language (not
even an assembly language) was available. To improve the
situation, a high-level language for programming the DCD-
VM has been developed, which is the subject of this paper.

3. A HIGH-LEVEL ATRON PROGRAMMING
LANGUAGE

3.1 Motivating example: obstacle avoidance
As a motivating example, consider a simple obstacle avoid-

ance scenario where a car (such as the one shown in Figure 1
in the introduction) is moving forwards until it detects an
obstacle using the forward proximity sensors of the front-
most modules. In this case it reverses while turning, and
then continues moving forwards. There are however many
ways of making a car from ATRON modules, as shown in
Figure 2: the car can be made longer (although more than 6
wheels makes turning impractical) and we can imagine two
ATRON cars joining up in the field to create a more powerful
vehicle. A controller that was programmed independently of
the concrete physical configuration of the robot would solve
many of these issues, and we describe how that can be done
using distributed control diffusion, as follows.

First, a query mobile program is used to identify the
wheels in the robot. For simplicity, any module with a ro-
tational axis perpendicular to the direction we wish to go in
can be considered a wheel when it only has a single, upwards
connection. (For the ATRON, a single upwards connection
means that the other hemisphere is free to rotate and hence
can act as a wheel.) Note that we assume that the robot has
been configured with car-motion as a purpose: we do not de-
tect any orthogonally aligned modules that may cause fric-
tion when moving forward, and free-hanging modules that
cannot reach the surface are still considered wheels. The
mobile program queries the position and connectivity prop-
erties of the module, and sets the role to either “left wheel”
or “right wheel,” as appropriate. When setting the role, any
neighboring modules are notified of the role change, facili-
tating queries that include the role of neighboring modules.
(For example, an “axle” has a “wheel” as a neighbor.)

Once the wheels have been identified, appropriate control
commands turning the main actuator in either direction can
be sent to the left and right wheels, respectively. Moreover,

Basic car Long car Collaborating cars

Figure 2: Different car configurations (simulated)

Experimental setup Approaching obstacle Stopped Reverse and turn

Moving forward again New obstacles! Stopped (again) Reverse and turn (again)

Figure 3: Obstacle avoidance using generic distributed controller diffusion program.

event handlers for detecting obstacles using the proximity
sensors are installed in the front wheels of the robot using
another mobile program. When the event is triggered, the
module that detected the obstacle sends out a“reverse”com-
mand to all wheels in the robot. This way, the controller has
effectively been distributed to the relevant modules of the
robot. Before the wheels start reversing the role is changed
to a “reversing wheel,” which is observed by the axle behav-
ior. The axles then turn an appropriate number of degrees to
make the car change orientation while reversing. Once the
wheels have finished reversing, they return to their respec-
tive forwards-moving roles, and the axles react accordingly
by returning to the original position.

3.2 The RDCD language
The Role-based Distribution Control Diffusion (RDCD)

language provides roles as a fundamental abstraction to struc-
ture the set of behaviors that are to be diffused into the mod-
ule structure. Diffusion of code is however implicit: RDCD
is a declarative language that allows roles to be assigned to
specific modules in the structure based on invariants; be-
haviors are implicitly distributed to modules based on their
association with roles. RDCD is a domain-specific language
in the sense that it is targeted to the ATRON robots and
moreover has very limited support for general-purpose com-

putation. RDCD provides primitives for simple decision-
making, but all complex computations must be performed
in external code.

Our compiler currently does not have a parser and must
therefore be given an abstract syntax tree constructed man-
ually. Nevertheless, to present the RDCD language, we show
the proposed BNF for RDCD in Figure 4 (non-terminals are
written using italicized capitals, concrete syntax in courier
font). An RDCD program declares a number of roles. A
role normally extends a super-role meaning that it inherits
all the members of the super-role; the common super-role
Module defines the capabilities of all modules. A role can be
concrete or abstract, with the usual semantics: all abstract
members must be overridden by concrete members for a role
be usable at runtime. A role declares a number of members
in the form of constants, invariants, and methods. There
currently is no explicit notion of state, so state must be rep-
resented using external code and accessed using functions.
A constant can be concrete or abstract, and always defines
an 8-bit signed value. For a module to play a given role,
all invariants declared by the role must be true (in case of
conflicts between roles, the choice of role is undefined). An
invariant is simply a boolean expression over constants and
functions.

Methods are used to define behavior that is active when

PROGRAM ::= ROLE∗ DEPLOYMENT
ROLE ::= abstract? role NAME extends NAME { MEMBER∗ }

| role NAME modifies NAME { MEMBER∗ }

MEMBER ::= CONSTANT | INVARIANT | METHOD
CONSTANT ::= abstract NAME | NAME := VALUE
INVARIANT ::= EXP ;

METHOD ::= MODIFIER∗ NAME () BLOCK
BLOCK ::= { STATEMENT∗ }

STATEMENT ::= ε | FUNCTION ; | if(EXP) { STATEMENT∗ } else { STATEMENT∗ }

EXP ::= VAR | FUNCTION | EXP BINOP EXP | BLOCK
FUNCTION ::= self. NAME (EXP∗) | NAME (EXP∗) | NAME . NAME (EXP∗)

MODIFIER ::= abstract | behavior | startup | command
VAR ::= NAME
VALUE ::= NUMBER | PREDEFINED
DEPLOYMENT ::= deployment { NAME∗ }

Figure 4: Proposed BNF for RDCD. Note that for simplicity, commas between function arguments are
omitted in the BNF.

a module plays a given role or any of the super-roles. A
method is simply a sequence of statements that either are
function invocations or conditionals. For simplicity meth-
ods currently always take zero arguments, but we expect
this limitation to change in the future. Function invoca-
tions are either local commands, functions, or global com-
mands. Local commands access the physical state of the
module (sensors, actuators, external code) and are prefixed
with the term“self.” to indicate that it is a local operation.
Functions are basically used to represent stateless operations
such as computing the size of (i.e., number of bits in) a bit
set.1 Global commands are of the form “Role.command” and
causes the command to be asynchronously invoked on all
modules currently playing that role or any of its sub-roles.
Arguments to functions are expressions, either constants,
compound expressions, or code blocks; a code block allows
code to be stored for later use (e.g., an event handler) or to
be executed in a special context (see example below). Note
that since the code is stateless no closure representation is
required. The function invocation syntax for primitive func-
tionality from the role Module (such as turning the main ac-
tuator) is the same as that of user-defined functions.

A method declaration can be prefixed by a modifier, as
follows. The method modifier “abstract” works in the usual
way (forces the enclosing role to be declared abstract). The
method modifier “behavior” causes the method to execute
repeatedly so long as the role is active, whereas the method
modifier “startup” causes the method to execute once when
the role is activated. Last, the method modifier “command”
causes the method to become exported for invocation as a
global command.

To supplement the basic “extends” approach to creating
a hierarchy of roles, a role can also “modify” another role
meaning that it is a mixin role that can be applied to the
designated role or any of its sub-roles. This approach al-
lows smaller units of behavior to be encapsulated into well-
structured roles that can be activated throughout specific
parts of the role hierarchy. Mixin roles currently cannot
be activated automatically using invariants but must be ex-
plicitly selected using a special self function assumeRole that

1Bit sets are used in the DCD-VM to represent sets of con-
nectors, which conveniently can be done using a single byte
since there are only 8 connectors.

Reverse

RightWheelLeftWheel

LeftWheel+Reverse RightWheel+Reverse

Wheel Axle

Module

Figure 6: Hierarchy of sub-role relations for the
RDCD program of Figure 5. Arrows represent the
sub-role relationship, roles in italics are abstract,
roles in bold are mixins.

takes a mixin role and a code block as arguments and causes
the module to temporarily change to the given role while the
code block is executed.

To facilitate the implementation we currently require the
programmer to explicitly specify in what order roles discov-
ery is performed in the structure. For example, in a car an
axle is a module that is attached to wheels, so wheels must be
identified before axles. Such dependencies can be detected
automatically by an analysis on the invariants or even made
redundant by having role discovery run for a while until
it stabilizes; such extensions are however considered future
work.

3.3 Example resolved
The complete RDCD program for implementing obstacle

avoidance in an arbitrary car-like structure of ATRON mod-
ules is shown in Figure 5. The role structure is illustrated
in Figure 6: a generic wheel role is used as a basis for defin-
ing concrete roles for left and right wheels. The difference
between a left wheel and a right wheel is what direction to
turn the main actuator to advance and on what connector to
monitor for obstacles. Moreover, a mixin role is used to in-
dicate a reversing wheel since its behavior is different which
should be observable to the rest of the structure.

In more detail, the abstract role Wheel abstracts over con-
stants defining on what side the wheel should be connected,
what event handler vector should be monitored for proximity

abstract role Wheel {

abstract constant connected_direction, event_handler, turn_direction;

self.center_position == EAST_WEST;

sizeof(self.total_connected()) == 1;

sizeof(self.connected(UP)) == 1;

sizeof(self.connected(connected_direction)) == 1;

startup move() {

if(self.y()>0) self.handleEvent(event_handler, { self.disableEvent(event_handler); Wheel.stop(); });

self.turnContinuously(turn_direction);

}

command stop() {

self.assumeRole(Reverse,{

self.turnContinuously(-turn_direction);

self.sleepWhileTurning(3);

self.turnContinuously(turn_direction);

self.enableEvent(event_handler);

});

}

}

role RightWheel extends Wheel {

constant connected_direction := EAST;

constant turn_direction := 1;

constant event_handler := EVENT_PROXIMITY_5;

}

role LeftWheel extends Wheel {

constant connected_direction := WEST;

constant turn_direction := -1;

constant event_handler := EVENT_PROXIMITY_1;

}

role Reverse modifies Wheel { }

role Axle {

sizeof(connected_role(DOWN,Wheel)) > 0;

behavior steer() {

if(connected_role(DOWN,Reverse) > 0) {

if(self.y>0)

self.turnTowards(30);

else

self.turnTowards(-30);

}

}

else

self.turnTowards(0);

}

}

deployment { RightWheel, LeftWheel, Axle }

Figure 5: RDCD program implementing obstacle avoidance (manually pretty-printed to improve readability)

RDCD program Member copy-down Bytecode programs

abstract role P
invariantP
abstract constant c;
startup b1() { S1 }
behavior b2() { S2 }

role Q extends P
constant c = value;
invariantQ
command b3() { S3 }

�
role Q extends P
startup b1() { S1 }
behavior b2() { S2 }
command b3() { S3 }

�

if(invariantP
&& invariantQ)
setRole(Q);
migrate;

if(hasRole(P))
S1;
migrate;

if(hasRole(P))
schedule { S2; repeat; }
migrate;

if(hasRole(Q))
install(Q.b3) { S3; }

Figure 7: Basic RDCD compilation process from roles to mobile bytecode programs

detection, and in what direction the main actuator should
turn. Then follows a number of invariants for defining a
wheel: rotational axis perpendicular to the direction the ve-
hicle should be moving, only connected to a single module
etc. The initial behavior of a wheel is to install an event
handler if the y coordinate is positive2 and then to start
turning continuously to make the car move forward. The
event handler starts by disabling itself (to avoid triggering
multiple events) and then invokes the method stop on all
wheels. The stop command temporarily assumes the mixin
role Reverse, reverses, and then restores the wheel to its pre-
vious state. The left and right wheels simply concretize the
abstract wheel class by defining the abstract constants.

The mixin role Reverse is empty, it is in fact used as a
“marker role”: the role Axle reacts to its adjacent wheel mod-
ules assuming the reverse role, and will in this case turn the
axle as appropriate. Note that turning the axle depends on
the global y coordinate which for example causes the front
and back wheel on the 6-wheeled car to turn in different di-
rections. This steering behavior in the axle is represented
using a behavior method that continuously monitors the role
of the connected module. (The DCD-VM maintains a lo-
cally stored awareness of the roles of the adjacent modules,
meaning that distributed communication only is used when
the wheel module changes roles, not every time the steering
behavior is run.)

3.4 Compiling RDCD to the DCD-VM
We now describe the compilation of RDCD into stateless,

mobile programs for the DCD-VM. A critical constraint is
the size of the compiled programs, since the DCD-VM cur-
rently transmits mobile programs using the standard ATRON
communication primitives which can become unstable when
the buffer size exceeds 50 bytes. For this reason, we prefer
multiple smaller mobile programs that move concurrently
throughout the structure as opposed to a single, larger pro-
gram that is harder to transmit correctly on the physical
hardware. Apart from a few peephole optimizations the
compiler does not do any analysis and optimization, but
there are numerous opportunities for optimizations, as will
be discussed later. Unless otherwise noted, all mobile pro-
grams generated use migration instructions to disperse through-
out the module structure.

The compilation process form roles to mobile bytecode

2The DCD-VM maintains compass directions and a 3D coor-
dinate system of the entire structure relative to the module
where the program was injected into the structure. This
module thus determines the directionality for the entire
structure.

programs is illustrated in Figure 7. The first step of the
compilation process is to copy down members from super-
roles to sub-roles; as will be explained later, mixin roles can
currently be ignored at this point. For each role a mobile
program is then generated that checks the associated in-
variants and sets the role accordingly if all the invariants
are satisfied. Next, for each startup method a mobile pro-
gram is generated that first checks the role and evaluates
the method body if the role matches. Similarly for behavior
methods, except that compiled behaviors use a special “re-
peat” instruction that causes the method to be rescheduled
for later execution from the start. Last, commands are in-
stalled on all modules that implement the appropriate roles.

Since mixin roles currently only can be activated explic-
itly using the function assumeRole, they can simply be repre-
sented by generating code sequences for changing to a differ-
ent role and back again. (Method overriding is non-trivial
to update when the role changes, but this can be done since
mobile programs essentially can modify the “remote invoca-
tion vtable” of each module.)

The copy-down approach allows role-specific constants to
be inlined into every program, and moreover simplifies the
implementation of features such as startup methods since
they simply can check for an exact role match instead of
having to take method overriding in sub-roles into account.
The downside is that deep role hierarchies will generate nu-
merous mobile programs, many of which may be redundant.
We believe a useful optimization would be to reduce the
number of mobile programs by combining them without ex-
ceeding the optimal message size for the physical modules.

3.5 Experiments
The RDCD compiler has been implemented in roughly

2000 lines of Java code, but currently does not include a
parser. Nevertheless, our running example is the program
of Figure 5 which has been fed to the compiler by manu-
ally building the AST.3 The output of the compiler is a C
program that initializes a collection of arrays with DCD-
VM bytecodes. This approach is currently required to run
programs on the DCD-VM since it does not support down-
loading code from a non-module source. In effect, all the
code is loaded in a single module (the “connector” module
in the car) and diffused throughout the module structure
from this module.4 The generated code is equivalent in func-

3We are currently investigating different options for the
concrete syntax based on feedback from researchers in the
robotics community, and plan on implementing a complete
parser when this study has been completed.
4This approach corresponds to reprogramming a single mod-

tionality to the hand-written bytecode initially used for the
obstacle avoidance, which can perform the obstacle avoid-
ance described at the beginning of this section in simulation
(the DCD-VM is not currently working on the physical hard-
ware due to various low-level implementation issues). The
generated code is however less efficient: generated code frag-
ments are typically 50% larger and twice the number of code
fragments are generated by the compiler than was present in
the manually written code. As mentioned earlier, we believe
that improved peephole optimizations and sharing of code
between related classes will close the gap between the auto-
matically generated code and the manually written code.

3.6 Assessment
The use of a high-level language to program the ATRON

modules using the DCD-VM provides a significantly higher
level of abstraction to the programmer which we expect will
result in a massive increase in productivity. A larger set of
experiments are however required to determine if this is the
case. Moreover, we are also interested by how useful the in-
dividual features of RDCD are when writing programs. The
required experiments are however out of the scope of this
paper due to the preliminary state of the compiler. Never-
theless, we can conclude that the use of inheritance between
roles combined with abstract constants allows the compiler
to generate mobile code fragments that are small and have
minimal resource requirements, which is a perfect fit for the
DCD-VM. Moreover, the use of explicitly activated mixin
roles provides language support for behaviors to temporarily
modify the role that a module is playing without requiring
numerous redundant declarations at the source level.

The RDCD compiler currently does not implement a type
checking, but the language is by design statically typed in
the sense that it is possible to check statically that local invo-
cations of behaviors always succeed. (The lack of threading
on a single module combined with the simple lexical nesting
of the argument to self.assumeRole facilitates type check-
ing.) Due to the distributed nature of the ATRONs, remote
invocation of behaviors cannot be guaranteed to succeed.
For example, a module may change role just after a remote
command has been delivered to the module, but before it has
been scheduled for execution (such a command is ignored in
the current implementation). In general, we believe that
a statically typed approach is likely to be too brittle for a
dynamically evolving distributed system, but large-scale ex-
periments are needed to determine what is the most useful
approach.

The RDCD language currently does not support state,
which significantly simplifies the role change mechanism.
Programmers thus have to resort to defining their own oper-
ations implemented in C code for manipulating state, which
is obviously not a satisfactory solution. Moreover, there is
currently no support for migrating state with mobile pro-
grams, which complicates e.g. writing a mobile program that
finds those potential wheel modules that are at the bottom
of the structure. Resolving these issues is considered future
work, but we envision allowing the programmer to declare
state both globally (persistent across role changes) and lo-

ule which in practice is much easier than reprogramming all
modules in a robot; memory is not a practical issue since the
constant arrays holding the generated C code are stored in
the 128K flash program memory which is much larger than
the 4K of RAM.

cally to roles (transient across role changes), since a prelim-
inary study of existing programs for the ATRON seems to
indicate the need for both kinds of state.

4. RELATED WORK
As an alternative to the DCD-VM, we have developed

the RAPL system that statically compiles role declarations
written in a simple XML-based language to conventional
C programs [7, 8]. Each role declaration is explicitly tied
to the physical structure of the robot, making it easy to
deploy and experiment with in practice, but less flexible in
terms of what robot structures a given program can support.
The commands declared for each role can simply be called
remotely by the neighboring module. We see this system
as a simple precursor to RDCD, since it only supports a
small subset of its features, namely the basic concept of roles.
Nevertheless, this system is more complete in the sense that
it from an XML specification generates code that works on
the physical modules.

Autonomous robots are often programmed using behavior-
based control [3]; behaviors are typically sensor-driven, re-
active, and goal-oriented controllers. Certain behaviors may
inhibit other behaviors, allowing the set of active behaviors
to vary. Modular robots often use the concept of a role albeit
in an ad-hoc fashion: complex overall behaviors can be de-
rived from a robot where different modules react differently
to the same stimuli, in effect allowing each module to play
a different role (e.g., [1, 5, 19]). Recently, Støy et al have
explicitly used the concept of a role to obtain a very robust
and composable behavior [20, 22]. Compared to RDCD,
the implementation of roles is ad-hoc and the only control
examples investigated are cyclic, signal-driven behaviors for
locomotion.

Apart from RDCD and RAPL, the only high-level pro-
gramming language for modular robots that the authors are
aware of is the Phase Automata Robot Scripting Language
(PARSL) [10, 25]. Here, XML-based declarations are used
to describe the behavior of each module in the PolyBot self-
reconfigurable robot [24]. Compared to RDCD and RAPL,
the tool support is much more complete and the language
has many advanced features for controlling locomotion using
behavior-based control. Nevertheless, PARSL completely
lacks the concept of a role for structuring the code: each
behavior is assigned to a specific module as an atomic unit.
Moreover, PARSL has no support for dynamically distribut-
ing code in the robot.

Outside the field of robotics, roles and mixins have been
investigated in numerous cases, which forms the basis of our
language design. Regarding static typing, our role-change
mechanism resembles that of Fickle [6], but since RDCD
roles have no state and role change is always local to a single
behavior, our approach is much more restricted but also eas-
ier to both implement and type check statically (although
the latter property has not been investigated in practice).
Mixin roles are a particularly simple use of the more gen-
eral concept of a mixin [2] that we expect to explore more
generally in future work.

5. CONCLUSION AND FUTURE WORK
In the paper we have presented the design of the RDCD

language for programming ATRON modules using role-based
programming coupled with distributed control diffusion. The

Playware: initial prototype Playware: new prototype iBlocks: initial prototype iBlocks: new prototype

Figure 8: Examples of physically interlocked systems. The Playware modules are interactive playgrounds with
pressure sensors and color LEDs, adjacent modules communicate using a wired connection that is established
when the modules are combined. The iBlocks are physical artifacts that allow children to interact with
computing devices, they are equipped with connectors with infrared communication (the newest version uses
magnetic connectors), tilt sensors and LEDs. In both cases, when users physically reconfigure the system the
behavior of the system as a whole should evolve accordingly.

design is supported by a preliminary implementation of a
compiler that can generate code for the non-trivial obstacle
avoidance scenario. Ongoing improvements to the compiler
includes completing the front-end parser and improving the
back-end optimizations.

In terms of future work, there are numerous improvements
that could be made to RDCD and the DCD-VM. In the
shorter term, a major issue is enabling the programmer to
express more precisely the relations and collaborations be-
tween modules, as opposed to describing the individual be-
haviors that give rise to the collaboration. For example, the
obstacle avoidance program in Figure 5 is not obviously an
obstacle avoidance algorithm; we believe that a program-
ming language that has a greater focus on the collabora-
tions would facilitate expressing such an algorithm clearly
and succinctly. As a long-term perspective, we are however
interested in generalizing the application domain, not only
to other types of modular self-reconfigurable systems, but
also to a more general class of embedded devices that could
be referred to as physically interlocked systems: networked
embedded systems with physical connectors, where the way
the systems are connected affects their behavior. Modular
robots are an example of such a system, but the authors are
currently investigating other systems that share the same
characteristics, such as the Playware Tiles and the iBlocks,
both shown in Figure 8 [12, 15]. We believe parts of the
DCD-VM and the RDCD language also would be applica-
ble to such systems, which can lead to the development of a
family of language platforms for physically interlocked sys-
tems.

6. REFERENCES
[1] H. Bojinov, A. Casal, and T. Hogg. Multiagent control

of self-reconfigurable robots. In Proceedings of Fourth
International Conference on MultiAgent Systems,
pages 143–150, 2000.

[2] G. Bracha and W Cook. Mixin-based inheritance. In
N. Meyrowitz, editor, OOPSLA/ECOOP ’90
Proceedings, pages 303–311. ACM SIGPLAN, 1990.

[3] R. Brooks. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and
Automation, 2:14–23, March 1986.

[4] A. Castano and P. Will. Autonomous and
self-sufficient conro modules for reconfigurable robots.
In Proceedings of the 5th International Symposium on
Distributed Autonomous Robotic Systems (DARS),
pages 155–164, Knoxville, Texas, USA, 2000.

[5] D.J. Christensen and K. Støy. Selecting a meta-module
to shape-change the ATRON self-reconfigurable robot.
In Proceedings of IEEE International Conference on
Robotics and Automations (ICRA), pages 2532–2538,
Orlando, USA, May 2006.

[6] Sophia Drossopoulou, Ferruccio Damiani, Mariangiola
Dezani-Ciancaglini, and Paola Giannini. More
dynamic object reclassification: Fickle∥. ACM
TOPLAS, 24(2):153–191, 2002.

[7] Nicolai Dvinge. A programming language for ATRON
modules. Master’s thesis, University of Southern
Denmark, 2007.

[8] Nicolai Dvinge, Ulrik P. Schultz, and David
Christensen. Roles and self-reconfigurable robots. In
Proceedings of the ECOOP’07 Workshop Roles’07 —
Roles and Relationships in OO Programming,
Multiagent systems and Ontologies, 2007. To appear.

[9] S.C. Goldstein and T. Mowry. Claytronics: A scalable
basis for future robots. Robosphere, November 2004.

[10] Alex Golovinsky, Mark Yim, Ying Zhang, Craig
Eldershaw, and Dave Duff. Polybot and PolyKinetic
system: A modular robotic platform for education. In
IEEE International Conference on Robots and
Automation (ICRA), 2004.

[11] M. W. Jorgensen, E. H. Ostergaard, and H. H. Lund.
Modular ATRON: Modules for a self-reconfigurable
robot. In Proceedings of IEEE/RSJ International
Conference on Robots and Systems (IROS), pages
2068–2073, Sendai, Japan, September 2004.

[12] H. H. Lund, T. Klitbo, and C. Jessen. Playware

technology for physically activating play. Artificial
Life and Robotics Journal, 9:165–174, 2005.

[13] H.H. Lund, R. Beck, and L. Dalgaard.
Self-reconfigurable robots with ATRON modules. In
Proceedings of 3rd International Symposium on
Autonomous Minirobots for Research and Edutainment
(AMiRE 2005), Fukui, 2005. Springer-Verlag.

[14] S. Murata, E. Yoshida, K. Tomita, H. Kurokawa,
A. Kamimura, and S. Kokaji. Hardware design of
modular robotic system. In Proceedings of the
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2210–2217,
Takamatsu, Japan, 2000.

[15] J. Nielsen and H. H. Lund. Modular robotics as a tool
for education and entertainment. In Proceedings of
IADIS International Conference on Cognition and
Exploratory Learning in Digital Age (CELDA 2005),
2005.

[16] D. Rus and M. Vona. Crystalline robots:
Self-reconfiguration with compressible unit modules.
Journal of Autonomous Robots, 10(1):107–124, 2001.

[17] Ulrik P. Schultz. Distributed control diffusion:
Towards a flexible programming paradigm for modular
robots. Submitted for publication, preliminary version
available at
http://www.mmmi.sdu.dk/~ups/apges07/dcd.pdf.

[18] W.-M. Shen, M. Krivokon, H. Chiu, J. Everist,
M. Rubenstein, and J. Venkatesh. Multimode
locomotion via superbot robots. In Proceedings of the
2006 IEEE International Conference on Robotics and
Automation, pages 2552–2557, Orlando, FL, 2006.

[19] Wei-Min Shen, Yimin Lu, and Peter Will.
Hormone-based control for self-reconfigurable robots.
In AGENTS ’00: Proceedings of the fourth
international conference on Autonomous agents, pages
1–8, New York, NY, USA, 2000. ACM Press.

[20] Kasper Stoy, Wei-Min Shen, and Peter Will. Using
role based control to produce locomotion in chain-type
self-reconfigurable robots. IEEE Transactions on
Robotics and Automation, special issue on
self-reconfigurable robots, 2002.

[21] K. Støy. How to construct dense objects with
self-reconfigurable robots. In Proceedings of European
Robotics Symposium (EUROS), pages 27–37, Palermo,
Italy, May 2006.

[22] K. Støy, W.-M. Shen, and P. Will. Implementing
configuration dependent gaits in a self-reconfigurable
robot. In Proceedings of the 2003 IEEE international
conference on robotics and automation (ICRA’03),
pages 3828–3833, Tai-Pei, Taiwan, September 2003.

[23] M. Yim. A reconfigurable modular robot with many
modes of locomotion. In Proceedings of the JSME
international conference on advanced mechatronics,
pages 283–288, Tokyo, Japan, 1993.

[24] M. Yim, D. Duff, and K. Roufas. Polybot: A modular
reconfigurable robot. In Proceedings of the IEEE
International Conference on Robotics and Automation
(ICRA), pages 514–520, San Francisco, CA, USA,
2000.

[25] Ying Zhang, Alex Golovinsky, Mark Yim, and Craig
Eldershaw. An XML-based scripting language for
chain-type modular robotic systems. In Proceedings of

the 8th Conference on Intelligent Autonomous Systems
(IAS), 2004.

