16 research outputs found

    Distributed Approximation of Fixed-Points in Trust Structures

    Get PDF
    Recently, Carbone, Nielsen and Sassone introduced the trust-structure framework; a semantic model for trust-management in global-scale distributed systems. The framework is based on the notion of trust structures; a set of ``trust-levels'' ordered by two distinct partial orderings. In the model, a unique global trust-state is defined as the least fixed-point of a collection of local policies assigning trust-levels to the entities of the system. However, the framework is a purely denotational model: it gives precise meaning to the global trust-state of a system, but without specifying a way to compute this abstract mathematical object. This paper complements q the denotational model of trust structures with operational techniques. It is shown how the least fixed-point can be computed using a simple, totally-asynchronous distributed algorithm. Two efficient protocols for approximating the least fixed-point are provided, enabling sound reasoning about the global trust-state without computing the exact fixed-point. Finally, dynamic algorithms are presented for safe reuse of information between computations, in face of dynamic trust-policy updates

    On the Recursive Enumerability of Fixed-Point Combinators

    Get PDF
    We show that the set of fixed-point combinators forms a recursively-enumerable subset of a larger set of terms that is (A) not recursively enumerable, and (B) the terms of which are observationally equivalent to fixed-point combinators in any computable context

    A Simple Proof of a Folklore Theorem about Delimited Control

    Get PDF
    We formalize and prove the folklore theorem that the static delimited-control operators shift and reset can be simulated in terms of the dynamic delimited-control operators control and prompt. The proof is based on a small-step operational semantics that takes the form of an abstract machine

    Exploiting Labels in Structural Operational Semantics

    Get PDF
    Structural Operational Semantics (SOS) allows transitions to be labelled. This is fully exploited in SOS descriptions of concurrent systems, but usually not at all in conventional descriptions of sequential programming languages. This paper shows how the use of labels can provide significantly simpler and more modular descriptions of programming languages. However, the full power of labels is obtained only when the set of labels is made into a category, as in the recently-proposed MSOS variant of SOS

    Program Extraction from Proofs of Weak Head Normalization

    Get PDF
    We formalize two proofs of weak head normalization for the simply typed lambda-calculus in first-order minimal logic: one for normal-order reduction, and one for applicative-order reduction in the object language. Subsequently we use Kreisel's modified realizability to extract evaluation algorithms from the proofs, following Berger; the proofs are based on Tait-style reducibility predicates, and hence the extracted algorithms are instances of (weak head) normalization by evaluation, as already identified by Coquand and Dybjer

    Bisimilarity is not Finitely Based over BPA with Interrupt

    Get PDF
    This paper shows that bisimulation equivalence does not afford a finite equational axiomatization over the language obtained by enriching Bergstra and Klop's Basic Process Algebra with the interrupt operator. Moreover, it is shown that the collection of closed equations over this language is also not finitely based

    An Operational Semantics for Trust Policies.

    Get PDF
    In the trust-structure model of trust management, principals specify their trusting relationships with other principals in terms of trust policies. In their paper on trust structures, Carbone et al. present a language for trust policies, and provide a suitable denotational semantics. The semantics ensures that for any collection of trust policies, there is always a unique global trust-state, compatible with all the policies, specifying everyone's degree of trust in everyone else. However, as the authors themselves point out, the language lacks an operational model: the global trust-state is a well-defined mathematical object, but it is not clear how principals can actually compute it. This becomes even more apparent when one considers the intended application environment: vast numbers of autonomous principals, distributed and possibly mobile. We provide a compositional operational semantics for a language of trust policies. The operational semantics is given in terms of a composition of I/O automata. We prove that this semantics is faithful to its corresponding denotational semantics, in the sense that any run of the I/O automaton ``converges to'' the denotational semantics of the policies. Furthermore, as I/O automata are a natural model of asynchronous distributed computation, the semantics leads to an algorithm for distributedly computing the trust-state, which is suitable in the application environment

    Modular Structural Operational Semantics

    Get PDF
    Modular SOS (MSOS) is a variant of conventional Structural Operational Semantics (SOS). Using MSOS, the transition rules for each construct of a programming language can be given incrementally, once and for all, and do not need reformulation when further constructs are added to the language. MSOS thus provides an exceptionally high degree of modularity in language descriptions, removing a shortcoming of the original SOS framework. After sketching the background and reviewing the main features of SOS, the paper explains the crucial differences between SOS and MSOS, and illustrates how MSOS descriptions are written. It also discusses standard notions of semantic equivalence based on MSOS. An appendix shows how the illustrative MSOS rules given in the paper would be formulated in conventional SOS

    An Operational Foundation for Delimited Continuations in the CPS Hierarchy

    Get PDF
    We present an abstract machine and a reduction semantics for the lambda-calculus extended with control operators that give access to delimited continuations in the CPS hierarchy. The abstract machine is derived from an evaluator in continuation-passing style (CPS); the reduction semantics (i.e., a small-step operational semantics with an explicit representation of evaluation contexts) is constructed from the abstract machine; and the control operators are the shift and reset family. At level n of the CPS hierarchy, programs can use the control operators shift_i and reset_i for

    New-HOPLA--A Higher-Order Process Language with Name Generation

    Get PDF
    This paper introduces new-HOPLA, a concise but powerful language for higher-order nondeterministic processes with name generation. Its origins as a metalanguage for domain theory are sketched but for the most part the paper concentrates on its operational semantics. The language is typed, the type of a process describing the shape of the computation paths it can perform. Its transition semantics, bisimulation, congruence properties and expressive power are explored. Encodings are given of well-known process algebras, including pi-calculus, Higher-Order pi-calculus and Mobile Ambients
    corecore