1,425 research outputs found

    Optimal Power Flow with Step-Voltage Regulators in Multi-Phase Distribution Networks

    Full text link
    This paper develops a branch-flow based optimal power flow (OPF) problem for multi-phase distribution networks that allows for tap selection of wye, closed-delta, and open-delta step-voltage regulators (SVRs). SVRs are assumed ideal and their taps are represented by continuous decision variables. To tackle the non-linearity, the branch-flow semidefinite programming framework of traditional OPF is expanded to accommodate SVR edges. Three types of non-convexity are addressed: (a) rank-1 constraints on non-SVR edges, (b) nonlinear equality constraints on SVR power flows and taps, and (c) trilinear equalities on SVR voltages and taps. Leveraging a practical phase-separation assumption on the SVR secondary voltage, novel McCormick relaxations are provided for (c) and certain rank-1 constraints of (a), while dropping the rest. A linear relaxation based on conservation of power is used in place of (b). Numerical simulations on standard distribution test feeders corroborate the merits of the proposed convex formulation.Comment: This manuscript has been submitted to IEEE Transactions on Power System

    Real-Time Local Volt/VAR Control Under External Disturbances with High PV Penetration

    Full text link
    Volt/var control (VVC) of smart PV inverter is becoming one of the most popular solutions to address the voltage challenges associated with high PV penetration. This work focuses on the local droop VVC recommended by the grid integration standards IEEE1547, rule21 and addresses their major challenges i.e. appropriate parameters selection under changing conditions, and the control being vulnerable to instability (or voltage oscillations) and significant steady state error (SSE). This is achieved by proposing a two-layer local real-time adaptive VVC that has two major features i.e. a) it is able to ensure both low SSE and control stability simultaneously without compromising either, and b) it dynamically adapts its parameters to ensure good performance in a wide range of external disturbances such as sudden cloud cover, cloud intermittency, and substation voltage changes. A theoretical analysis and convergence proof of the proposed control is also discussed. The proposed control is implementation friendly as it fits well within the integration standard framework and depends only on the local bus information. The performance is compared with the existing droop VVC methods in several scenarios on a large unbalanced 3-phase feeder with detailed secondary side modeling.Comment: IEEE Transactions on Smart Grid, 201

    NOVEL OPTIMAL COORDINATED VOLTAGE CONTROL FOR DISTRIBUTION NETWORKS USING DIFFERENTIAL EVOLUTION TECHNIQUE

    Get PDF
    This paper investigates a Distributed Generators (DG) connected to distribution networks offer multiple benefits for power networks and environments in the case of renewable sources. Nevertheless, if there is not an appropriate planning and control strategy, several issues, such as voltage rise problems and increased power losses, may happen. In order to overcome such disadvantages, in this paper, a coordinated voltage control method for distribution networks with multiple distributed generators is proposed. This method is based on a differential evolution DE approach to obtain the optimal setting points for each control component. Furthermore this proposed method considers both of time-varying load demand and production, leading to not only an improvement in the voltage profile but also to optimally minimize the active power loss

    Improving the Performance of Low Voltage Networks by an Optimized Unbalance Operation of Three-Phase Distributed Generators

    Get PDF
    This work focuses on using the full potential of PV inverters in order to improve the efficiency of low voltage networks. More specifically, the independent per-phase control capability of PV three-phase four-wire inverters, which are able to inject different active and reactive powers in each phase, in order to reduce the system phase unbalance is considered. This new operational procedure is analyzed by raising an optimization problem which uses a very accurate modelling of European low voltage networks. The paper includes a comprehensive quantitative comparison of the proposed strategy with two state-of-the-art methodologies to highlight the obtained benefits. The achieved results evidence that the proposed independent per-phase control of three-phase PV inverters improves considerably the network performance contributing to increase the penetration of renewable energy sources.Ministerio de Economía y Competitividad ENE2017-84813-R, ENE2014-54115-

    Voltage and Reactive Power Control in Islanded Microgrids

    Get PDF
    Previous studies put on view lots of advantages and concerns for islanded microgrids (IMGs), whether it is initiated for emergency, intentionally planned or permanent island system purposes. From the concerns that have not been addressed yet, such as: 1) The ability of the distributed generation (DG) units to maintain equal reactive power sharing in a distribution system; 2) The ability of the DG units to maintain acceptable voltage boundary in the entire IMG; 3) The functionality of the existing voltage and reactive power (Volt/Var) DG, this thesis analyzes the complexity of voltage regulations in droop-controlled IMGs. A new multi-agent algorithm is proposed to satisfy the reactive power sharing and the voltage regulation requirements of IMGs. Also, the operation conflicts between DG units and Volt/Var controllers, such as shunt capacitors (SCs) and load-ratio control transformer (LRT) during the IMG mode of operation, are investigated in this thesis. Further, a new local control scheme for SCs and LRTs has been proposed to mitigate their operational challenges in IMGs
    corecore