36,898 research outputs found

    Bearing-Based Distributed Control and Estimation of Multi-Agent Systems

    Full text link
    This paper studies the distributed control and estimation of multi-agent systems based on bearing information. In particular, we consider two problems: (i) the distributed control of bearing-constrained formations using relative position measurements and (ii) the distributed localization of sensor networks using bearing measurements. Both of the two problems are considered in arbitrary dimensional spaces. The analyses of the two problems rely on the recently developed bearing rigidity theory. We show that the two problems have the same mathematical formulation and can be solved by identical protocols. The proposed controller and estimator can globally solve the two problems without ambiguity. The results are supported with illustrative simulations.Comment: 6 pages, to appear in the 2015 European Control Conferenc

    A distributed optimization framework for localization and formation control: applications to vision-based measurements

    Full text link
    Multiagent systems have been a major area of research for the last 15 years. This interest has been motivated by tasks that can be executed more rapidly in a collaborative manner or that are nearly impossible to carry out otherwise. To be effective, the agents need to have the notion of a common goal shared by the entire network (for instance, a desired formation) and individual control laws to realize the goal. The common goal is typically centralized, in the sense that it involves the state of all the agents at the same time. On the other hand, it is often desirable to have individual control laws that are distributed, in the sense that the desired action of an agent depends only on the measurements and states available at the node and at a small number of neighbors. This is an attractive quality because it implies an overall system that is modular and intrinsically more robust to communication delays and node failures

    Localization from semantic observations via the matrix permanent

    Get PDF
    Most approaches to robot localization rely on low-level geometric features such as points, lines, and planes. In this paper, we use object recognition to obtain semantic information from the robot’s sensors and consider the task of localizing the robot within a prior map of landmarks, which are annotated with semantic labels. As object recognition algorithms miss detections and produce false alarms, correct data association between the detections and the landmarks on the map is central to the semantic localization problem. Instead of the traditional vector-based representation, we propose a sensor model, which encodes the semantic observations via random finite sets and enables a unified treatment of missed detections, false alarms, and data association. Our second contribution is to reduce the problem of computing the likelihood of a set-valued observation to the problem of computing a matrix permanent. It is this crucial transformation that allows us to solve the semantic localization problem with a polynomial-time approximation to the set-based Bayes filter. Finally, we address the active semantic localization problem, in which the observer’s trajectory is planned in order to improve the accuracy and efficiency of the localization process. The performance of our approach is demonstrated in simulation and in real environments using deformable-part-model-based object detectors. Robust global localization from semantic observations is demonstrated for a mobile robot, for the Project Tango phone, and on the KITTI visual odometry dataset. Comparisons are made with the traditional lidar-based geometric Monte Carlo localization

    A Unified Dissertation on Bearing Rigidity Theory

    Full text link
    This work focuses on the bearing rigidity theory, namely the branch of knowledge investigating the structural properties necessary for multi-element systems to preserve the inter-units bearings when exposed to deformations. The original contributions are twofold. The first one consists in the definition of a general framework for the statement of the principal definitions and results that are then particularized by evaluating the most studied metric spaces, providing a complete overview of the existing literature about the bearing rigidity theory. The second one rests on the determination of a necessary and sufficient condition guaranteeing the rigidity properties of a given multi-element system, independently of its metric space

    SoundCompass: a distributed MEMS microphone array-based sensor for sound source localization

    Get PDF
    Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass's hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field

    Routing Unmanned Vehicles in GPS-Denied Environments

    Full text link
    Most of the routing algorithms for unmanned vehicles, that arise in data gathering and monitoring applications in the literature, rely on the Global Positioning System (GPS) information for localization. However, disruption of GPS signals either intentionally or unintentionally could potentially render these algorithms not applicable. In this article, we present a novel method to address this difficulty by combining methods from cooperative localization and routing. In particular, the article formulates a fundamental combinatorial optimization problem to plan routes for an unmanned vehicle in a GPS-restricted environment while enabling localization for the vehicle. We also develop algorithms to compute optimal paths for the vehicle using the proposed formulation. Extensive simulation results are also presented to corroborate the effectiveness and performance of the proposed formulation and algorithms.Comment: Publised in International Conference on Umanned Aerial System
    • …
    corecore