2 research outputs found

    Meta Learning for Causal Direction

    Full text link
    The inaccessibility of controlled randomized trials due to inherent constraints in many fields of science has been a fundamental issue in causal inference. In this paper, we focus on distinguishing the cause from effect in the bivariate setting under limited observational data. Based on recent developments in meta learning as well as in causal inference, we introduce a novel generative model that allows distinguishing cause and effect in the small data setting. Using a learnt task variable that contains distributional information of each dataset, we propose an end-to-end algorithm that makes use of similar training datasets at test time. We demonstrate our method on various synthetic as well as real-world data and show that it is able to maintain high accuracy in detecting directions across varying dataset sizes

    Distinguishing between cause and effect via kernel-based complexity measures for conditional distributions

    No full text
    We propose a method to evaluate the complexity of probability measures from data that is based on a reproducing kernel Hilbert space seminorm of the logarithm of conditional probability densities. The motivation is to provide a tool for a causal inference method which assumes that conditional probabilities for effects given their causes are typically simpler and smoother than vice-versa. We present experiments with toy data where the quantitative results are consistent with our intuitive understanding of complexity and smoothness. Also in some examples with real-world data the probability measure corresponding to the true causal direction turned out to be less complex than those of the reversed order
    corecore