20,977 research outputs found

    On the Number of Embeddings of Minimally Rigid Graphs

    Full text link
    Rigid frameworks in some Euclidian space are embedded graphs having a unique local realization (up to Euclidian motions) for the given edge lengths, although globally they may have several. We study the number of distinct planar embeddings of minimally rigid graphs with nn vertices. We show that, modulo planar rigid motions, this number is at most (2nβˆ’4nβˆ’2)β‰ˆ4n{{2n-4}\choose {n-2}} \approx 4^n. We also exhibit several families which realize lower bounds of the order of 2n2^n, 2.21n2.21^n and 2.88n2.88^n. For the upper bound we use techniques from complex algebraic geometry, based on the (projective) Cayley-Menger variety CM2,n(C)βŠ‚P(n2)βˆ’1(C)CM^{2,n}(C)\subset P_{{{n}\choose {2}}-1}(C) over the complex numbers CC. In this context, point configurations are represented by coordinates given by squared distances between all pairs of points. Sectioning the variety with 2nβˆ’42n-4 hyperplanes yields at most deg(CM2,n)deg(CM^{2,n}) zero-dimensional components, and one finds this degree to be D2,n=1/2(2nβˆ’4nβˆ’2)D^{2,n}={1/2}{{2n-4}\choose {n-2}}. The lower bounds are related to inductive constructions of minimally rigid graphs via Henneberg sequences. The same approach works in higher dimensions. In particular we show that it leads to an upper bound of 2D3,n=2nβˆ’3nβˆ’2(nβˆ’6nβˆ’3)2 D^{3,n}= {\frac{2^{n-3}}{n-2}}{{n-6}\choose{n-3}} for the number of spatial embeddings with generic edge lengths of the 1-skeleton of a simplicial polyhedron, up to rigid motions

    Formation Shape Control Based on Distance Measurements Using Lie Bracket Approximations

    Get PDF
    We study the problem of distance-based formation control in autonomous multi-agent systems in which only distance measurements are available. This means that the target formations as well as the sensed variables are both determined by distances. We propose a fully distributed distance-only control law, which requires neither a time synchronization of the agents nor storage of measured data. The approach is applicable to point agents in the Euclidean space of arbitrary dimension. Under the assumption of infinitesimal rigidity of the target formations, we show that the proposed control law induces local uniform asymptotic stability. Our approach involves sinusoidal perturbations in order to extract information about the negative gradient direction of each agent's local potential function. An averaging analysis reveals that the gradient information originates from an approximation of Lie brackets of certain vector fields. The method is based on a recently introduced approach to the problem of extremum seeking control. We discuss the relation in the paper

    Topological mechanics of origami and kirigami

    Get PDF
    Origami and kirigami have emerged as potential tools for the design of mechanical metamaterials whose properties such as curvature, Poisson ratio, and existence of metastable states can be tuned using purely geometric criteria. A major obstacle to exploiting this property is the scarcity of tools to identify and program the flexibility of fold patterns. We exploit a recent connection between spring networks and quantum topological states to design origami with localized folding motions at boundaries and study them both experimentally and theoretically. These folding motions exist due to an underlying topological invariant rather than a local imbalance between constraints and degrees of freedom. We give a simple example of a quasi-1D folding pattern that realizes such topological states. We also demonstrate how to generalize these topological design principles to two dimensions. A striking consequence is that a domain wall between two topologically distinct, mechanically rigid structures is deformable even when constraints locally match the degrees of freedom.Comment: 5 pages, 3 figures + ~5 pages S
    • …
    corecore