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FORMATION SHAPE CONTROL BASED ON DISTANCE1

MEASUREMENTS USING LIE BRACKET APPROXIMATIONS∗2

RAIK SUTTNER† AND ZHIYONG SUN‡3

Abstract. We study the problem of distance-based formation control in autonomous multi-agent4
systems in which only distance measurements are available. This means that the target formations5
as well as the sensed variables are both determined by distances. We propose a fully distributed6
distance-only control law, which only involves distance measurements for each individual agent to7
stabilize a desired formation shape while a storage of measured data is not required. The approach8
is applicable to point agents in the Euclidean space of arbitrary dimension. Under the assumption of9
infinitesimal rigidity of the target formations, we show that the proposed control law induces local10
uniform asymptotic stability. Our approach involves sinusoidal perturbations in order to extract11
information about the negative gradient direction of each agent’s local potential function. An aver-12
aging analysis reveals that the gradient information originates from an approximation of Lie brackets13
of certain vector fields. The method is based on a recently introduced approach to the problem of14
extremum seeking control. We discuss the relation in the paper.15

Key words. distance-based formation control, distance-only measurements, averaging, Lie16
brackets, extremum seeking control17

AMS subject classifications. 34C29, 34H15, 93A14, 93D1518

1. Introduction. Distance-based formation control is an extensively studied19

subject in the field of autonomous multi-agent systems. The wish to achieve and20

maintain prescribed distances among autonomous agents in a distributed way arises21

in various applications such as leader-follower systems or in the context of formation22

shape control [34]. This task becomes especially difficult if the agents can measure23

only distances to other members of the team but not their relative positions.24

In the present paper, we focus on the model of kinematic points in the Euclidean25

space of arbitrary dimension. The interaction topology is described by an undirected26

graph, where each node represents one of the agents. When we connect the current27

positions of the agents by line segments according to the edges of the graph, we28

obtain a graph in the Euclidean space, which is also referred to as a formation. We29

study the problem of distance-based formation control, i.e., the target formations are30

defined by distances. To be more precise, a target formation is reached if for each31

edge of the graph, the distance between the corresponding pair of agents is equal to32

a desired value. These distances are the actively controlled variables. The aim is to33

find a distributed control law that steers the agents into one of the target formations.34

The agents have to accomplish this goal without any shared information like a global35

coordinate system or a common clock to synchronize their motion.36

A well-established approach to solve the above problem is a gradient descent37

control law [21, 9, 33, 32, 40]. For this purpose, every agent is assigned with a38

local potential function. These functions penalize deviations of the distances to the39
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2 R. SUTTNER AND Z. SUN

prescribed values. Each local potential function is defined in such a way that it attains40

its global minimum value if and only if the distances to the neighbors are equal to the41

desired values. Thus, a target formation is reached if all agents have minimized the42

values of their local potential functions. To reach the minimum, every agent follows43

the negative gradient direction of its local potential function. It is shown in [21, 9, 33]44

that this approach can lead to local uniform asymptotic stability with respect to the45

set of desired states. In fact, by imposing suitable rigidity assumptions on the target46

formations, one can prove local exponential stability; see, e.g., [32, 40].47

An implementation of the gradient descent control law requires that all agents48

should be able to measure the relative positions to their neighbors in the underly-49

ing graph. It is clear that relative positions contain much more information than50

distances. In other words, the sensed variables are stronger than the controlled vari-51

ables. It is therefore natural to ask whether distance-based formation control is still52

possible even if the sensed variables coincide with the controlled variables. This means53

that each agent can only use its own real-time distance measurements to steer itself54

into a target formation. We also remark that distance sensing and measurement55

has emerged as a mature technique through the development of many low-cost, high56

precision sensors, such as ultrasonic sensors or laser scanners (see e.g., the survey57

in [18]). Therefore, it motivates us to explore feasible solutions to formation control58

with distance-only measurement, which also finds significant applications in relevant59

areas, e.g., multi-robotic coordination in practice.60

To our best knowledge, there are just a few studies on formation control by61

distance-only measurements. The idea in [1] is to compute relative positions directly62

from distance measurements. However, in order to do so, the agents need more infor-63

mation than just the distances to their neighbors in the underlying graph. It is shown64

in [1] that if the graph is rigid, and if each agent also has access to the distances to65

its two-hop neighbors, then they can compute the relative positions by means of a66

Cholesky factorization of a suitable matrix, which is obtained from distance measure-67

ments. Since this factorization is only unique up to an orthogonal transformation,68

each agent also has to harmonize these relative positions with its individual coordi-69

nate system. This requires a certain ability to sense bearing. Thus, it is not sufficient70

to sense only the actively controlled distances.71

Another approach is presented in [6]. In contrast to the above strategy, it suffices72

that each agent measures the distances to its neighbors in the underlying graph. The73

multi-agent system is divided into subgroups. Following a prescribed schedule, only74

one of these subgroups is active at a time while the other agents remain at their75

positions. This requires that the agents share a common clock. It is assumed that76

the agents of the currently active group have the ability to first localize the resting77

neighbors of the team by means of distance measurements, and then move into the78

best possible position. Note that the strategy requires that each agent can map and79

memorize its own motion within its own local coordinate system. For a minimally rigid80

graph in the plane, this algorithm leads locally to the desired convergence. However, a81

generalization to higher dimensions is limited, since the strategy requires a minimally82

rigid graph that can be constructed by means of a so-called Henneberg sequence [2],83

which is, in general, possible only in two dimensions.84

A recent attempt to control formation shapes by distance-only measurements can85

be found in [20]. In this case, the agents perform suitable circular motions with com-86

mensurate frequencies. Using collected data from distance measurements during a87

prescribed time interval, each agent can extract relative positions and relative veloc-88

ities of its neighbors by means of Fourier analysis. As in [6], the approach in [20]89
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FORMATION SHAPE CONTROL BASED ON DISTANCE MEASUREMENTS 3

relies on the assumption that the agents share a precise common clock to synchronize90

their motions. The proposed strategy leads to convergence if certain control param-91

eters are chosen sufficiently small. However, only existence of these parameters can92

be ensured but there is no explicit rule how to obtain them. Moreover, the control93

law only induces convergence to the set of desired formations but not convergence94

to a single static formation. In general, a common drift of the multi-agent system95

remains. An extension to higher dimensions is not obvious, since the extraction of96

relative positions and velocities relies on the geometry of the plane.97

A common feature of all of the above strategies is that the agents should be able to98

compute or infer relative positions from distance measurements. In the present paper,99

we use a different approach. To explain the idea, we return to the gradient descent100

control law. In this case, each agent tries to minimize its own local potential function101

by moving into the negative gradient direction. A computation of the gradient requires102

measurements of relative positions. However, the value of each local potential function103

can be computed from individual distance measurements, and is therefore accessible104

to every agent. This leads to the question of whether an agent can find the minimum105

of its local potential function when only the values of the function are available. To106

solve this problem, we use an approach that was recently introduced in the context107

of extremum seeking control, see, e.g., [13, 15, 10, 36, 37, 38]. By feeding in suitable108

sinusoidal perturbation, we induce that the agents are driven, at least approximately,109

into descent directions of their local potential functions. On average, this leads to a110

decay of all local potential functions, and therefore convergence to a target formation.111

The proposed control law for each agent needs no other information than the current112

value of the local potential function. Under the assumption that the target formations113

are infinitesimally rigid (see Section 2 for the definition), we can ensure local uniform114

asymptotic stability. Our control strategy is fully distributed, and can be applied to115

point agents in any finite dimension.116

An earlier attempt to apply Lie bracket approximations to the problem of for-117

mation shape control can be found in [43, 42]. The control law therein requires a118

permanent all-to-all communication between the agents for an exchange of distance119

information. The control law in the present paper is based on individual distance120

measurements and works without any exchange of measured data. Moreover, the121

results in [43, 42] contain an unknown frequency parameter for the sinusoidal per-122

turbations. It is assumed that the frequency parameter is chosen sufficiently large;123

otherwise convergence to a desired formation cannot be guaranteed. The results in the124

above papers provide only the existence of a sufficiently large frequency parameter,125

but there is no explicit rule on how to find that value. The control law in the present126

paper can lead to local uniform asymptotic stability even if the frequency parameter127

is chosen arbitrarily small. We discuss the influence of the frequency parameter on128

the performance of our control law in the main part.129

The idea of using Lie bracket approximations to extract directional information130

from distance measurements can also be found in several other studies. The range131

of applications includes, among others, multi-agent source seeking [14], synchroniza-132

tion [12], and obstacle avoidance [11]. As in the present paper, the desired states are133

characterized by minima of (artificial) potential functions. A purely distance-based134

control law is derived by using Lie bracket approximations for the direction of steepest135

decent. We note that the above studies only guarantee practical asymptotic stabil-136

ity if the above-mentioned frequency parameter is chosen larger than a certain lower137

bound. The value of this lower bound as well as the size of the domain of attraction138

are however unknown. Our results for formation shape control are stronger because139

This manuscript is for review purposes only.



4 R. SUTTNER AND Z. SUN

they ensure asymptotic stability (with a possibly small domain of attraction) for any140

choice of the frequency parameter. Thus, our findings might also be of interest to the141

above fields of applications.142

The paper is organized as follows. In Section 2, we introduce basic definitions143

and notations, which we use throughout the paper. As indicated above, our approach144

involves the notion of infinitesimal rigidity, which is recalled in Section 3. We also145

derive suitable estimates for the derivatives of the potential functions in this section.146

The distance-only control law and the main stability result are presented in Section 4,147

which are supported by certain numerical simulations in the same section. A detailed148

analysis of the closed-loop system and the proof of the main theorem is carried out149

in Section 5. In Section 6, we compare the proposed control strategy to the approach150

in the papers on extremum seeking control that we cited above. The paper ends with151

some concluding remarks in Section 7.152

2. Basic definitions and notation. Recall that an affine Euclidean space con-153

sists of a nonempty set P , a vector space V with an inner product 〈·, ·〉 : V × V → R,154

and a map +: P×V → P such that the following conditions are satisfied: (i) p+0 = p155

for every p ∈ P , (ii) (p + v) + w = p + (v + w) for all p ∈ P , v, w ∈ V , and (iii) for156

any two p, q ∈ P , there exists a unique v ∈ V , usually denoted by v = q − p, such157

that p + v = q. The elements of P are called points, and the elements of V are158

called translations. For instance p, q ∈ P could be the positions of two agents, and159

q − p ∈ V is the corresponding translation. In this paper, we consider the particular160

case P = V = Rn, and 〈v, w〉 is the standard Euclidean inner product of v, w ∈ Rn.161

To distinguish P and V in our notation, we use letters like p, q, x for points, and162

letters like v, w for translations. Throughout the paper, we measure the length of a163

translation v ∈ Rn by the Euclidean norm ‖v‖ :=
√
〈v, v〉. Let α : Rn → Rm be a164

linear map. Then we usually write αv instead of α(v) for v ∈ V . The adjoint of α165

is the unique linear map α> : Rm → Rn that satisfies 〈v, α>w〉 = 〈αv,w〉 for every166

v ∈ Rn and every w ∈ Rm. The rank of α, i.e., the dimension of the image of α, is167

denoted by rankα.168

Let f : U → Rm be a map defined on a subset U of Rn. If m = 1, then we call f169

a function, and if m = n, then we call f a vector field. For every given y ∈ Rm, the170

fiber of f over y, denoted by f−1(y), is the (possibly empty) set of all x ∈ U with171

f(x) = y. Suppose that U is open. If f is differentiable at some p ∈ U , then we172

let Df(p) : Rn → Rm denote the derivative of f at p. As usual, for a nonnegative173

integer k, the map f is said to be of class Ck if it is k times continuously differentiable.174

The word smooth always means of class C∞. In case of its existence, the kth derivative175

of f at p ∈ U , k ≥ 2, is denoted by Dkf(p), which is a k-linear map. If n = 1, then176

we also use symbols like ḟ , f̈ , . . ., or f ′, f ′′, . . . for derivatives. Let ψ : U → R be a177

differentiable function. For every p ∈ U , we let ∇ψ(p) ∈ Rn denote the gradient of ψ178

at p, i.e., the unique vector that satisfies 〈∇ψ(p), v〉 = Dψ(p)v for every v ∈ Rn. The179

map ∇ψ : U → Rn is a vector field. Let X : U → Rn be a vector field. For every180

p ∈ U , we define (Xψ)(p) := Dψ(p)X(p). The resulting function Xψ : U → R is called181

the Lie derivative of ψ along X. If X,Y : U → Rn are differentiable vector fields, then182

the vector field [X,Y ] : U → Rn defined by [X,Y ](p) := DY (p)X(p)−DX(p)Y (p) is183

called the Lie bracket of X,Y .184

3. Infinitesimal rigidity and gradient estimates. The considerations in this185

section require elementary definitions from differential geometry. As in [29], we extend186

the notion of smoothness for maps on not necessarily open domains as follows. A map187

f : A → B between arbitrary sets A ⊆ Rn and B ⊆ Rm is called smooth if for each188

This manuscript is for review purposes only.
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x ∈ A, there exist an open neighborhoodW of x in Rn and a smooth map F : W → Rm189

such that f(ξ) = F (ξ) holds for every ξ ∈ A ∩W . A subset M of Rn is called a smooth190

manifold of dimension k if for each point p ∈M there exists a parametrization of M191

at p, i.e., a homeomorphism φ : V → U from an open subset V of Rk onto an open192

neighborhood U of p in M (where M is endowed with the subspace topology) such193

that both φ and φ−1 are smooth. Let M ⊆ Rn be a smooth manifold of dimension k,194

and let φ : V → U be a parametrization of M at p ∈ M . Let Dφ(φ−1(p)) : Rk → Rn195

denote the derivative of φ at φ−1(p), where φ is considered as a map from V into Rn.196

The image of Dφ(φ−1(p)) is a k-dimensional subspace of Rn, which is called the197

tangent space to M at p. This space does not depend on the particular choice of the198

parametrization of M at p; see again [29].199

3.1. Infinitesimal rigidity. In this subsection, we recall several definitions and200

statements from [4, 5].201

An (undirected) graph G = (V,E) is a set V = {1, . . . , N} together with a202

nonempty set E of two-element subsets of V . Each element of V is referred to as203

a vertex of G and each element of E is called an edge of G. As an abbreviation, we204

denote an edge {i, j} ∈ E simply by ij. A framework G(p) in Rn is a graph G with N205

vertices together with a point206

p = (p1, . . . , pN ) ∈ Rn × · · · × Rn = RnN .207

Note that for a framework G(p) in Rn, we may have pi = pj for i 6= j.208

Consider a graph G = (V,E) with N vertices and M edges, that is, V =209

{1, . . . , N}, and E has M elements. Order the M edges of G in some way and210

define the edge map fG : RnN → RM of G by211

fG(p) := (. . . , ‖pj − pi‖2, . . .)ij∈E212

for every p = (p1, . . . , pN ) ∈ RnN . Thus, the value of fG at any (p1, . . . , pN ) ∈ RnN213

is a vector that collects the squared distances ‖pj − pi‖2 for all edges ij ∈ E. A point214

p ∈ RnN is said to be a regular point of fG if the function rank DfG : RnN → R215

attains its global maximum value at p. For later references, we state the following216

result from [4], which is an easy consequence of the Inverse Function Theorem.217

Proposition 3.1. Let G be a graph with N vertices and M edges. If p ∈ RnN218

is a regular point of fG, then there exists an open neighborhood U of p in RnN such219

that the subset fG(U) of RM is a smooth manifold of dimension rank DfG(p).220

The complete graph with N vertices is the graph with N vertices that has each two-221

element subset of {1, . . . , N} as an edge.222

Definition 3.2. Let G be a graph with N vertices, let C be the complete graph223

with N vertices, and let p ∈ RnN . The framework G(p) in Rn is said to be rigid if224

there exists a neighborhood U of p in RnN such that225

(3.1) f−1
G (fG(p)) ∩ U = f−1

C (fC(p)) ∩ U.226

Thus, a framework G(p) is rigid if and only if for every q sufficiently close to p with227

‖qj − qi‖ = ‖pj − pi‖ for every edge ij of G, we have in fact ‖qj − qi‖ = ‖pj − pi‖ for228

all vertices i, j of G. Another result from [4] is the following.229

Proposition 3.3. Let C be the complete graph with N vertices. For every p ∈230

RnN , the subset f−1
C (fC(p)) of RnN is a smooth manifold.231
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6 R. SUTTNER AND Z. SUN

The manifold f−1
C (fC(p)) is actually analytic and one can derive an explicit formula232

for its dimension; see again [4]. As in [5], we use the manifold structure of f−1
C (fC(p))233

to define infinitesimal rigidity.234

Definition 3.4. A framework G(p) in Rn is infinitesimally rigid if the tangent235

space to f−1
C (fC(p)) at p coincides with the kernel of DfG(p).236

To make the notion of infinitesimal rigidity more intuitive, we recall a geometric237

interpretation from [16]. For this purpose, we consider smooth isometric deformations238

of a given framework G(p), i.e., smooth curves from an open time interval around 0239

into the set f−1
G (fG(p)) passing through p at time 0. By definition, each such curve240

γ = (γ1, . . . , γN ) preserves the squared distances ‖γj(t) − γi(t)‖2 for all edges ij of241

G, and we have fG(γ(t)) = fG(p) for every t in the domain of γ. By the chain242

rule, this implies that the velocity vector γ̇(0) of γ at time 0 is an element of the243

kernel of DfG(p) (which is termed rigidity matrix in the literature of graph rigidity;244

see e.g., [5]). This explains why vectors in the kernel of DfG(p) are referred to as245

infinitesimal isometric perturbations of G(p). On the other hand, the tangent space246

to the smooth manifold f−1
C (fC(p)) at p consists of the velocities of all smooth curves247

in f−1
C (fC(p)) passing through p. By definition, the curves in f−1

C (fC(p)) preserve248

the squared distances for all vertices of G. Thus, infinitesimal rigidity of G(p) means249

that, for every smooth curve γ of the form γ(t) = p+ tv with v being an infinitesimal250

isometric perturbations of G(p), changes of the squared distances ‖γj(t)− γi(t)‖2 are251

not detectable around t = 0 in first-order terms for all vertices i, j of G.252

For our purposes, it is more convenient to characterize the notion of infinitesimal253

rigidity by the following result from [5].254

Theorem 3.5. A framework G(p) in Rn is infinitesimally rigid if and only if p255

is a regular point of fG and if G(p) is rigid.256

It follows that the notions of rigidity and infinitesimal rigidity coincide at regular257

points of the edge map. Finally, we note that it is also possible to characterize258

infinitesimal rigidity of G(p) in Rn by means of an explicit formula for rank DfG(p);259

see again [5].260

3.2. Gradient estimates. In this subsection, G = (V,E) is a graph with N261

vertices and M edges. Let fG : RnN → RM be the edge map of G. For each edge262

ij ∈ E, let dij be a nonnegative real number. Define d := (d2
ij)ij∈E ∈ RM , where263

the components of d are ordered in the same way as the components of fG. Define a264

nonnegative smooth function ψG,d : RnN → R by265

(3.2) ψG,d(p) :=
1

4
‖fG(p)− d‖2 =

1

4

∑
ij∈E

(
‖pj − pi‖2 − d2

ij

)2
266

for every p ∈ RnN . This type of function will appear again in the subsequent sections267

as local and global potential function of a system of N agents in Rn. Our aim is to268

derive boundedness properties for the gradient of ψG,d. For this purpose, we need the269

following auxiliary statements.270

Lemma 3.6. Let g : U → R be a nonnegative C2 function on an open subset U271

of Rk.272

(a) For every compact subset K of U , there exists c1 > 0 such that ‖∇g(x)‖2 ≤273

c1 g(x) for every x ∈ K.274

(b) Suppose that there exists z ∈ U such that g(z) = 0 and such that the second275

derivative of g at z is positive definite. Then, there exist c3 > 0 and a276
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FORMATION SHAPE CONTROL BASED ON DISTANCE MEASUREMENTS 7

neighborhood W of z in U such that ‖∇g(x)‖2 ≥ c3 g(x) for every x ∈W .277

The above estimates for the gradient can be easily deduced from Taylor’s formula.278

We omit the proof here. For every r > 0, define the sublevel set279

ψ−1
G,d(≤ r) := {p ∈ RnN | ψG,d(p) ≤ r}.280

281

Proposition 3.7. (a) For every r > 0, there exists c1 > 0 such that282

(3.3) ‖∇ψG,d(p)‖2 ≤ c1 ψG,d(p)283

for every p ∈ ψ−1
G,d(≤ r).284

(b) For every r > 0 and every integer l ≥ 2, there exists c2 > 0 such that285

(3.4) |DlψG,d(p)(v1, . . . , vl)| ≤ c2 ‖v1‖ · · · ‖vl‖286

for every p ∈ ψ−1(≤ r) and all v1, . . . , vl ∈ RnN .287

(c) Suppose that for each p ∈ f−1
G (d), the framework G(p) is infinitesimally rigid.288

Then, there exist r, c3 > 0 such that289

(3.5) ‖∇ψG,d(p)‖2 ≥ c3 ψG,d(p)290

for every p ∈ ψ−1
G,d(≤ r).291

Proof. For the proof, we need some additional facts from differential geometry,292

which can be found in [25]. An isometry of Rn is a map T : Rn → Rn such that293

‖Ty− Tx‖ = ‖y− x‖ for all x, y ∈ Rn. It is known that the set E(n) of all isometries294

of Rn forms a Lie group, called the Euclidean group. For each T ∈ E(n), we define295

TN : RnN → RnN by TNp := (Tp1, . . . , TpN ) for every p = (p1, . . . , pN ) ∈ RnN .296

It is known that the map E(n) × RnN → RnN , (T, p) 7→ TNp is a smooth group297

action of E(n) on RnN . For every subset S of RnN , we let SE(n) denote the set of298

all TNp with p ∈ S and T ∈ E(n). In particular, for a single point p ∈ RnN , the set299

pE(n) := {p}E(n) is called the orbit of p. The set RnN/E(n) of all orbits endowed with300

the quotient topology is called the orbit space. Note that ψG,d is invariant under the301

action of E(n), i.e., we have ψG,d ◦ TN = ψG,d for every T ∈ E(n). It is easy to check302

that every sublevel set of ψG,d can be reduced to a compact set by isometries, i.e., for303

every r > 0, there exists a compact subset K of RnN such that ψ−1
G,d(≤ r) = KE(n).304

To prove parts (a) and (b), fix an arbitrary r > 0. Then, there exists a compact305

subset K of RnN such that ψ−1
G,d(≤ r) = KE(n). By Lemma 3.6 (a), there exists c1 > 0306

such that (3.3) holds for every p ∈ K. Note that the derivative of any T ∈ E(n) is an307

orthogonal transformation and therefore leaves the Euclidean norm invariant. By the308

chain rule, we obtain ‖(∇ψG,d) ◦ TN‖ = ‖∇ψG,d‖ for every T ∈ E(n), which implies309

that (3.3) holds in fact for every p ∈ KE(n). Let l ≥ 2 be an integer. Since ψG,d is310

smooth, there exists c2 > 0 such that (3.4) holds for every p ∈ K and all v1, . . . , vl ∈311

Rn. As for the gradient, it follows from the invariance of ψG,d under the action312

of E(n), the chain rule, and the invariance of the Euclidean norm under orthogonal313

transformations that (3.4) holds for every p ∈ KE(n) and all v1, . . . , vl ∈ Rn.314

For the rest of the proof, we suppose that G(q) is infinitesimally rigid for every315

q ∈ f−1
G (d). In the first step, we show that for every q ∈ f−1(d), there exist a316

neighborhood W of q in RnN and some constant c3 > 0 such that (3.5) holds for317

every p ∈ W . Suppose that q ∈ f−1
G (d). By Proposition 3.1 and Theorem 3.5, there318
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exists an open neighborhood U of q in RnN such that the subset fG(U) of RM is a319

smooth manifold of dimension k := rank DfG(q). After possibly shrinking U around q,320

we can find a parametrization φ : V → fG(U) for the entire manifold fG(U). Then,321

f̄G := (φ−1 ◦ fG)|U : U → V is a smooth map with rank Df̄G(q) = k. Define a smooth322

function gd : V → R by gd(x) := ‖φ(x)− d‖2/4 for every x ∈ V . Then, the restriction323

of ψG,d to U equals gd ◦ f̄G, and by the chain rule, we obtain324

∇ψG,d(p) = Df̄G(p)>∇gd(f̄G(p))325

for every p ∈ U , where Df̄G(p)> : Rk → RnN denotes the adjoint of Df̄G(p) : RnN →326

Rk with respect to the Euclidean inner product. Since p 7→ Df̄G(p)> is continuous327

and has full rank k at q, there exist a neighborhood W of q in U and a constant c′3 > 0328

such that ‖Df̄G(p)>v‖ ≥ c′3‖v‖ for every p ∈W and every v ∈ Rk. In particular, this329

implies330

‖∇ψG,d(p)‖ ≥ c′3 ‖∇gd(f̄G(p))‖331

for every p ∈W . Using φ(z) = d at z := f̄G(q) ∈ V , a direct computation shows that332

D2gd(z)(v, v) = ‖Dφ(z)v‖2/2 for every v ∈ Rk. Since rank Dφ(z) = k, it follows that333

the second derivative of gd at z is positive definite. Because of Lemma 3.6 (b), we334

can shrink W sufficiently around q and find some c′′3 > 0 such that335

‖∇gd(f̄G(p))‖2 ≥ c′′3 gd(f̄G(p)) = c′′3 ψG,d(p)336

for every p ∈W . Thus, (3.5) holds for every p ∈W with c3 := (c′3)2 c′′3 .337

Let π : RnN → RnN/E(n) be the projection onto the orbit space. Let C be338

the complete graph with N vertices. Note that the edge maps fC and fG are con-339

tinuous, and also invariant under the action of E(n), i.e., we have fC ◦ TN = fC340

and fG ◦ TN = fG for every T ∈ E(n). Thus, there exist unique continuous maps341

f̃C , f̃G : RnN/E(n) → RM such that fC = f̃C ◦ π and fG = f̃G ◦ π (see [25]). The342

assumption of rigidity means in the orbit space that for every orbit p̃ ∈ f̃−1
G (d), there343

exists a neighborhood Ũ of p̃ in RnN/E(n) such that f̃−1
G (d) ∩ Ũ = f̃−1

C (f̃C(p̃)) ∩ Ũ .344

Since f̃−1
G (d) is compact, and since f̃−1

C (f̃C(p̃)) = {p̃}, it follows that f̃−1
G (d) only345

consists of finitely many orbits. Thus, there exists a finite set P ⊆ f−1
G (d) such that346

f−1
G (d) = PE(n). Since P is finite, we obtain from the previous paragraph that there347

exist a neighborhood W of P in RnN and some constant c3 > 0 such that (3.5) holds348

for every p ∈W . Since both ψG,d and ‖∇ψG,d‖ are invariant under the action of E(n),349

we conclude that (3.5) holds for every p ∈ WE(n). The proof is complete, if we can350

show that there exists r > 0 such that ψ−1
G,d(≤ r) ⊆ WE(n). Since ψG,d : RnN → R is351

continuous and invariant under the action of E(n), there exists a unique continuous352

function ψ̃G,d : RnN/E(n)→ R such that ψG,d = ψ̃G,d◦π. Since the projection map π353

is open (see [25]), the set W̃ := π(W ) is a neighborhood of P̃ := π(P ) = ψ̃−1
G,d(0) in354

RnN/E(n). Since ψ̃G,d is continuous and has compact sublevel sets, there exists a355

sufficiently small r > 0 such that ψ̃−1
G,d(≤ r) ⊆ W̃ . Thus, ψ−1

G,d(≤ r) ⊆ WE(n), which356

completes the proof.357

Remark 3.8. In general, the noncompact set ψ−1
G,d(0) of global minima of ψG,d358

might have a complicated structure. However, the proof of Proposition 3.7 reveals359

that under the assumption of infinitesimal rigidity, the set ψ−1
G,d(0) is simply the union360

of orbits of finitely many points in RnN under action of the Euclidean group. It361

therefore suffices to consider ψG,d in a small neighborhood of a single point of each362

orbit. A similar strategy is also applied in several other studies on formation shape363
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p1

b1,1
b1,2

p2

b2,1b2,2

p3

b3,2

b3,1

‖p2 − p1‖
‖p3 − p1‖

‖p3 − p2‖

Fig. 4.1. A system of N = 3 point agents in Rn=2. Their current distances ‖pj − pi‖ are
indicated by dotted lines. The agents do not share information about a global coordinate system.
Instead, each agent navigates with respect to its individual body frame, which is defined by the
orthonormal velocity directions bi,k.

control (see, e.g., [19, 32]). The assumption of infinitesimal rigidity allows us to derive364

the lower bound (3.5) for the gradient of ψG,d on a noncompact sublevel set. This365

estimate will play an important role in the proof of our main result.366

4. Formation control.367

4.1. Problem description. We consider a system of N point agents in Rn. For368

each i = 1, . . . , N , let bi,1, . . . , bi,n ∈ Rn be an orthonormal basis of Rn. We assume369

that the motion of agent i ∈ {1, . . . , N} is determined by the kinematic equations370

(4.1) ṗi =

n∑
k=1

ui,k bi,k,371

where each ui,k is a real-valued input channel to control the velocity into direction bi,k.372

The situation is depicted in Figure 4.1. It is worth to mention that the directions bi,k373

do not need to be known for an implementation of the control law that is presented374

in the next subsection.375

Suppose that the agents are equipped with very primitive sensors so that they can376

only measure distances to certain other members of the team. These measurements are377

described by an (undirected) graph G = (V,E); see Subsection 3.1 for the definition.378

If there is an edge ij ∈ E between agents i, j ∈ V , then it means that agent i can379

measure the Euclidean distance ‖pj − pi‖ to agent j and vice versa. Note that the380

agents cannot measure relative positions pj − pi but only distances. For each edge381

ij ∈ E, let dij ≥ 0 be a nonnegative real number, which is the desired distance between382

agents i and j. We assume that these distances are realizable in Rn, i.e., there exists383

p = (p1, . . . , pN ) ∈ RnN such that ‖pj − pi‖ = dij for every ij ∈ E. We are interested384

in a distributed and distance-only control law that steers the multi-agent system into385

such a target formation. The control law that we propose in Subsection 4.2 requires386

only distance measurements and can be implemented directly in each agent’s local387

coordinate frame, which is independent of any global coordinate frame.388

We remark that, in the present paper, we assume an undirected graph for mod-389

eling a multi-agent formation system, as is often commonly assumed in the litera-390

ture on multi-agent coordination control (see the surveys [34, 7]). This assumption391

is motivated by various application scenarios. For instance, in practice agents are392

often equipped with homogeneous sensors that have the same sensing ability, e.g.,393
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same sensing ranges for range sensors. Therefore, it is justifiable to assume bidirec-394

tional sensing (described by an undirected graph) in modeling a multi-agent system.395

Undirected graph also enables a gradient-based control law for stabilizing formation396

shapes, which may not be possible for general directed graphs. Extensions of the397

current results to directed graphs will be a topic for future research.398

4.2. Control law and main statement. For each i = 1, . . . , N , define a local399

potential function ψi : RnN → R by400

(4.2) ψi(p) :=
1

4

∑
j∈V : ij∈E

(
‖pj − pi‖2 − d2

ij

)2
401

for every p = (p1, . . . , pN ) ∈ RnN . Note that for the computation of the value of ψi,402

agent i only needs to measure the distances ‖pj − pi‖ to its neighbors j ∈ V with403

ij ∈ E. Choose functions h1, h2 : R→ R with the following properties for ν = 1, 2:404

(Pi) hν(y) = 0 for every y ≤ 0,405

(Pii) hν is bounded and of class C2 on (0,∞),406

(Piii) hν(y)/y remains bounded as y ↓ 0,407

(Piv) h′ν(y) remains bounded as y ↓ 0,408

(Pv) h′′ν(y)y remains bounded as y ↓ 0,409

(Pvi) there exist r, c > 0 such that410

(4.3) [h1, h2](y) := h′2(y)h1(y)− h′1(y)h2(y) ≤ −c y411

holds for every y ∈ (0, r],412

where h′ν and h′′ν denote the first and second derivative of hν on (0,∞), respectively.413

Example 4.1. Let A : [0,∞) → R be a bounded function of class C2 such that414

A(0) = 0, and A′(y) > 0 for every y ≥ 0. For instance, A(y) = tanh y or also415

A(y) = y/(1 + y) are two admissible choices. If we define h1(y) := h2(y) := 0 for416

y ≤ 0 and417

h1(y) := A(y) sin(log y),(4.4a)418

h2(y) := A(y) cos(log y)(4.4b)419420

for y > 0, then a direct computation shows that the functions h1, h2 satisfy condi-421

tions (Pi)-(Pvi) with [h1, h2](y) = −A(y)2/y for every y > 0.422

Remark 4.2. The assumptions (Pi)-(Pvi) on h1, h2 are imposed to ensure the423

existence and boundedness of certain Lie derivatives and Lie brackets, which appear424

later in the analysis of the closed-loop system. These boundedness properties are425

derived in Subsection 5.1.426

For i = 1, . . . , N , and k = 1, . . . , n, let ωi,k be nN pairwise distinct positive real427

numbers, and define u(i,k,1), u(i,k,2) : R→ R by428

u(i,k,1)(t) :=
√
ωi,k cos(ωi,kt+ ϕi,k),(4.5a)429

u(i,k,2)(t) :=
√
ωi,k sin(ωi,kt+ ϕi,k).(4.5b)430431

with possible phase shifts ϕi,k ∈ R.432

Example 4.3. Let ω be a positive real number, and let433

(4.6) ωi,k := ω ((i− 1)n+ k)434

for i = 1, . . . , N , and k = 1, . . . , n. This defines nN pairwise distinct positive real435

numbers ωi,k.436
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Remark 4.4. The choice of pairwise distinct frequency coefficients ωi,k for the437

sinusoids u(i,k,ν) has the purpose to excite certain Lie brackets of vector fields, which438

are directly linked to the bracket in (4.3) of h1, h2. This effect is revealed by a suitable439

averaging analysis in Subsection 5.2.440

We propose the control law441

(4.7) ui,k = u(i,k,1)(t)h1

(
ψi(p)

)
+ u(i,k,2)(t)h2

(
ψi(p)

)
442

for i = 1, . . . , N , and k = 1, . . . , n.443

Remark 4.5. An implementation of the control law (4.7) requires that each agent444

knows the desired inter-agent distances to its neighbors, and its own pairwise distinct445

frequencies (and possible phase shifts). Such information can be embedded into the446

memory of each agent prior to an implementation of the control law. Also, each agent447

needs to measure the current inter-agent distances (in contrast to relative positions,448

as assumed in most papers on formation shape control) relative to its neighbors in449

order to compute the value of its local potential (4.2). The setting of such a control450

scenario is common in most distributed control laws, which is acknowledged by the451

term ‘centralized design, distributed implementation’, which does not contradict with452

the principle of distributed control (see e.g., the surveys [7, 34]). Therefore, the453

proposed control law is fully distributed.454

It is also important to note that we allow arbitrary phase shifts ϕi,k in the sinu-455

soids (4.5). The phase shifts for one agent are not assumed to be known to the other456

members of the team. Moreover, since we merely assume that the frequency coeffi-457

cients ωi,k are pairwise distinct, it is not necessary that the sinusoids have a common458

period. In order to keep distinct frequencies for each agent during the running time,459

all agents should run their own clocks at least with approximately the same speed so460

that any two distinct frequencies would not be driven to be the same in the process461

of formation shape control. To avoid possible frequency drifts that may violate the462

condition of pairwise distinct frequencies, a clock synchronization is required for all463

agents during the running time to ensure they run at the same clock rate.464

It is shown later in Lemma 5.1 (a) that for every i ∈ {1, . . . , N} and every ν ∈465

{1, 2}, the function hν ◦ψi is of class C1. It therefore follows from standard theorems466

for ordinary differential equations that system (4.1) under the control law (4.7) has467

a unique maximal solution for any initial condition. These solutions do not have a468

finite escape time because property (Pii) ensures that (4.7) is bounded. In summary,469

we have the following result.470

Proposition 4.6. For any initial condition, system (4.1) under control law (4.7)471

has a unique global solution, which we call a trajectory of (4.1) under (4.7).472

To state our main result, we introduce the global potential function ψ : RnN → R473

given by474

(4.8) ψ(p) :=
1

4

∑
ij∈E

(
‖pj − pi‖2 − d2

ij

)2
.475

For every r > 0, we define the sublevel set476

ψ−1(≤ r) := {p ∈ RnN | ψ(p) ≤ r}.477

Note that the zero set of ψ,478

(4.9) ψ−1(0) = {(p1, . . . , pN ) ∈ RnN | ∀ij ∈ E : ‖pj − pi‖ = dij},479
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is the set of desired formations. Since we assume that the distances dij are realizable480

in Rn, the set (4.9) is not empty.481

Theorem 4.7. Suppose that for every point p of (4.9), the framework G(p) is482

infinitesimally rigid. Then, there exist constants c, r > 0 such that for every t0 ∈ R,483

and every p0 ∈ ψ−1(≤ r), the trajectory γ of system (4.1) under control law (4.7)484

with initial condition γ(t0) = p0 converges to some point of (4.9), and the estimate485

(4.10) ψ(γ(t)) ≤ 2ψ(p0)

1 + c ψ(p0) (t− t0)
486

holds for every t ≥ t0.487

A detailed proof of Theorem 4.7 is presented in Section 5. At this point, we only488

indicate the reason why the set (4.9) becomes locally uniformly asymptotically stable489

for system (4.1) under control law (4.7). Note that the closed-loop system is an490

ordinary differential equation in the product space RnN , which consists of the coupled491

differential equations492

(4.11) ṗi =

n∑
k=1

2∑
ν=1

u(i,k,ν)(t)hν(ψi(p)) bi,k493

in Rn for i = 1, . . . , N . One can interpret the right-hand side of (4.11) as a linear com-494

bination of the state dependent maps p 7→ hν(ψi(p)) bi,k with time-varying coefficient495

functions u(i,k,ν). When we consider the closed-loop system in the product space, each496

of the maps p 7→ hν(ψi(p)) bi,k defines a vector field X(i,k,ν) on RnN . The analysis in497

Section 5 will show that the trajectories of (4.11) are driven into directions of certain498

Lie brackets of the vector fields X(i,k,ν) as long as the system state is sufficiently close499

to the set (4.9). To be more precise, the particular choice of the sinusoids u(i,k,ν)500

with pairwise distinct frequencies ωi,k causes the trajectories of (4.11) to follow Lie501

brackets of the form [X(i,k,1), X(i,k,2)]. The ordinary differential equation in RnN with502

the sum of all Lie brackets 1
2 [X(i,k,1), X(i,k,2)] on the right-hand side is referred to as503

the corresponding Lie bracket system [13]. A direct computation shows that the Lie504

bracket system is given by the coupled differential equations505

(4.12) ṗi =
1

2
[h1, h2](ψi(p))∇piψ(p)506

in Rn for i = 1, . . . , N , where ∇piψ : RnN → Rn is the gradient of the global potential507

function ψ with respect to the ith position vector. Because of property (Pvi), we have508

[h1, h2](y) < 0 for y > 0 close to 0. Thus, in a neighborhood of (4.9), the system509

state of (4.12) is constantly driven into a descent direction of ψ. The assumption510

of infinitesimal rigidity ensures that the decay of ψ along trajectories of (4.12) is511

sufficiently fast. Since the trajectories of (4.11) approximate the behavior of (4.12) in512

a neighborhood of (4.9), this in turn implies that also the value of ψ along trajectories513

of (4.1) under (4.7) decays on average. The above strategy is closely related to several514

other studies on Lie bracket approximations. We will discuss this relation in Section 6.515

Remark 4.8. We emphasize that Theorem 4.7 guarantees uniform asymptotic sta-516

bility only in a certain neighborhood of the set (4.9) of desired formations. The size517

of the domain of attraction ψ−1(≤ r) is characterized by the real number r > 0. The518

value of r depends on the choice of the functions hν and on the frequency coeffi-519

cients ωi,k. As a general rule one can say that the domain of attraction increases520
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Fig. 4.2. Simulation on stabilization control of a four-agent rectangular formation shape. We
denote the positions by pi = (xi, yi) ∈ R2 for i = 1, . . . , 4. The initial formation is indicated by
dotted lines, and the finial formation is indicated by dashed lines.

if the ωi,k are large and also their distances |ωi,k − ωi′,k′ | are large. This property521

can be ensured by choosing the ωi,k as in Example 4.3 with a large number ω > 0.522

The reader is referred to Remark 5.7 and to the discussions in Section 6 for more523

details. It is an open question whether the domain of attraction of (4.1) under (4.7)524

can exceed the domain of attraction of the corresponding Lie bracket system (4.12)525

for a suitable choice of the hν and the ωi,k. Note that a gradient-based control law526

can lead to undesired equilibria at stationary points of the potential function.527

4.3. Simulation examples. In this subsection, we provide two simulations to528

demonstrate the behavior of (4.1) under (4.7). We consider a rectangular formation529

shape in two dimensions and a double tetrahedron formation shape in three dimen-530

sions. One can check that the corresponding frameworks are infinitesimally rigid by531

means of the rank condition for the derivative of the edge map in [5]. The same forma-532

tions are also considered in [40] for system (4.1) under the well-established negative533

gradient control law. Note that in contrast to the present paper, relative position534

measurements are required in [40] to stabilize the desired formation shapes.535

Our first example is a system of N = 4 point agents in the Euclidean space of536

dimension n = 2. For i = 1, . . . , N , the orthonormal velocity vectors of agent i in (4.1)537

are given by bi,1 = (cosφi, sinφi) and bi,2 = (− sinφi, cosφi), where φi = iπ/3. We538

let G be the complete graph of N nodes. This means that each agent can measure539

the distances to all other members of the team. The common goal of the agents is to540

reach a rectangular formation with desired distances d12 = d34 = 3, d23 = d14 = 4,541

and d13 = d24 = 5. The initial conditions are given by p1(0) = (0, 0), p2(0) = (−1, 4),542

p3(0) = (5, 3), and p4(0) = (3, 0). As in Example 4.1, we define the functions h1, h2543

by (4.4), where A := tanh. The frequency coefficients ωi,k are chosen as in Example 4.3544

with a positive real number ω. For the sake of simplicity, the phase shifts ϕi,k of the545

sinusoids are all set equal to zero. It turns out that the initial positions are not in the546

domain of attraction if we choose ω = 1. As indicated in Remark 4.8, the domain of547

attraction becomes larger when we increase ω. The trajectories for ω = 7 are shown548

in Figure 4.2.549

In the second example, we consider a system of N = 5 point agents in the550
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Fig. 4.3. Simulation on stabilization control of a double tetrahedron formation. We denote the
positions by pi = (xi, yi, zi) ∈ R3 for i = 1, . . . , 5. The initial formation is indicated by dotted lines,
and the finial formation is indicated by dashed lines.

Euclidean space of dimension n = 3. For i = 1, . . . , N , the orthonormal veloc-551

ity vectors of agent i in (4.1) are given by bi,1 = (sin θi cosφi, sin θi sinφi, cos θi),552

bi,2 = (− sinφi, cosφi, 0), and bi,3 = (− cos θi cosφi,− cos θi, sin θi), where φi = iπ/3553

and θi = iπ/6. We let G be the graph that originates from the complete graph554

of N nodes by removing the edge between the nodes 4 and 5. The common goal of555

the agents is to reach a formation shape of a double tetrahedron with desired dis-556

tances dij = 2 for every edge ij of G. The initial conditions are given by p1(0) =557

(0,−1.0, 0.5), p2(0) = (1.8, 1.6,−0.1), p3(0) = (−0.2, 1.8, 0.05), p4(0) = (1.2, 1.9, 1.7)558

and p5(0) = (−1.0,−1.5,−1.2). The functions hν , the frequency coefficients ωi,k, and559

the phase shifts ϕi,k are chosen as in the first example. Again, the initial positions560

are not within the domain of attraction of (4.1) under (4.7) for ω = 1. However, for561

ω = 7, one can see in Figure 4.3 that the trajectories converge to the desired formation562

shape.563

One may interpret the oscillatory trajectories in the simulations as follows. Each564

agent constantly explores how small changes of its current position influences the value565

of its local potential function ψi. This way an agent obtains gradient information. On566

average it leads to a decay of all local potential functions. Sufficiently high oscillations567

are necessary in our approach to ensure that every agent can explore its neighborhood568

properly. If the value of ψi is small, then the terms sin(logψi) and cos(logψi) in (4.4)569

induce sufficiently high oscillations. When ψi is not small, then an increase of the570

global frequency parameter ω can compensate the lack of oscillations. It is clear that571

the energy effort to implement (4.7) is much larger than for a gradient-based control572

law. This is in some sense the price that we have to pay when we reduce the amount573

of utilized information from the gradient of ψi to the values of ψi.574

5. Local asymptotic stability analysis of the closed-loop system. The575

aim of this section is to prove Theorem 4.7. In the first step, we rewrite system (4.1)576

under control law (4.7) as a control-affine system under open-loop controls. For this577

purpose, we have to introduce a suitable notation. Recall that, for every i ∈ {1, . . . , n},578

the velocity directions bi,1, . . . , bi,n ∈ Rn in (4.1) are assumed to be an orthonormal579
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basis of Rn. For each i ∈ {1, . . . , N} and each k ∈ {1, . . . , n}, define a constant580

vector field Bi,k : RnN → RnN by Bi,k(p) := (0, . . . , 0, bi,k, 0, . . . , 0), where bi,k ∈ Rn581

is at the kth position. It is clear that the vectors Bi,k(p) form an orthonormal basis582

of RnN at any p ∈ RnN . As an abbreviation, we define an indexing set Λ to be the583

set of all triples (i, k, ν) with i ∈ {1, . . . , N}, k ∈ {1, . . . , n}, and ν ∈ {1, 2}. For each584

m = (i, k, ν) ∈M , define a vector field Xm : RnN → RnN by585

(5.1) Xm(p) := hν(ψi(p))Bi,k(p).586

When we insert (4.7) into (4.1), the closed-loop system can be written as the control-587

affine system588

(5.2) ṗ =
∑
m∈Λ

um(t)Xm(p)589

with control vector fields Xm and open-loop controls um.590

5.1. Boundedness properties. In this subsection, we derive suitable bound-591

edness properties of (iterated) Lie derivatives of the global potential function ψ along592

the control vector fields Xm in (5.2). These boundedness properties will ensure in the593

proof of Theorem 4.7 in Subsection 5.3 that certain remainder terms become small594

when the agents are close to the set (4.9) of target formations.595

Let W1,W2 be subsets of Rk, and let W be a subset of the (possibly empty)596

intersection of W1,W2. Let b : W1 → R be a nonnegative function. For the sake of597

convenience, we introduce the following terminology. We say that a function f : W2 →598

R is bounded by a multiple of b on W if there exists c > 0 such that |f(x)| ≤ c b(x)599

for every x ∈ W . We say that a vector field X : W2 → Rk is bounded by a multiple600

of b on W if there exists c > 0 such that ‖X(x)‖ ≤ c b(x) for every x ∈ W . For601

a map A on W2, which assigns every point of W2 to a bilinear form Rk × Rk → R,602

we say that A is bounded by a multiple of b on W if there exists c > 0 such that603

|A(x)(v, w)| ≤ c b(x)‖v‖‖w‖ for every x ∈W and all v, w ∈ Rk.604

For every i ∈ {1, . . . , N}, and every r > 0, we define the sublevel set605

ψ−1
i (≤ r) := {p ∈ RnN | ψi(p) ≤ r}606

where ψi is the local potential function (4.2) of agent i. On the other hand, we have607

defined the global potential function ψ in (4.8) for the entire multi-agent system. It608

follows directly from the definitions that, for every i ∈ {1, . . . , N} and every k ∈609

{1, . . . , n}, the Lie derivatives of ψi and ψ along the vector field Bi,k in (5.1) coincide,610

i.e., Bi,kψ = Bi,kψi.611

Lemma 5.1. Let m = (i, k, ν) ∈ Λ and let r > 0.612

(a) The function hν ◦ ψi is of class C1 and the following boundedness properties613

hold:614

(i) hν ◦ ψi is bounded by a multiple of ψi on ψ−1
i (≤ r);615

(ii) ∇(hν ◦ ψi) is bounded by a multiple of ψ
1/2
i on ψ−1

i (≤ r).616

(b) The Lie derivative Xmψ of ψ along Xm is of class C2 and the following617

boundedness properties hold:618

(i) Xmψ is bounded by a multiple of ψ
3/2
i on ψ−1

i (≤ r);619

(ii) ∇(Xmψ) is bounded by a multiple of ψi on ψ−1
i (≤ r);620

(iii) D2(Xmψ) is bounded by a multiple of ψ
1/2
i on ψ−1

i (≤ r).621
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16 R. SUTTNER AND Z. SUN

Proof. Let Zi be the zero set ψ−1
i (0) of ψi, and let Ui := RnN \ Zi be the set of622

points at which ψi is strictly positive. Note that ψi is of the form (3.2) with respect623

to the subgraph of G that originates by restricting G to the vertex i and its neighbors624

in G. Therefore, Proposition 3.7 can be applied to ψi. Recall that hν is assumed to625

satisfy the properties (Pi)-(Pvi), which are listed in Subsection 4.2.626

Because of property (Piii), the function hν ◦ψi is bounded by a multiple of ψi on627

ψ−1
i (≤ r). It follows that there exists c > 0 such that628

|(hν ◦ ψi)(q)− (hν ◦ ψi)(p)| ≤ c |ψi(q)− ψi(p)|629

for every p ∈ Zi, and every q ∈ ψ−1
i (≤ r). This implies that the derivative of hν ◦ ψi630

exists and vanishes at every p ∈ Zi with vanishing derivative. Since property (Pii)631

ensures that hν ◦ ψi is of class C2 on Ui, we can compute632

∇(hν ◦ ψi)(p) = h′ν(ψi(p))∇ψi(p)633

for every p ∈ Ui. Because of property (Piv), the function h′ν ◦ψi : Ui → R is bounded634

by a constant on Ui∩ψ−1
i (≤ r). By Proposition 3.7 (a), the vector field∇ψi is bounded635

by a multiple of ψ
1/2
i on ψ−1

i (≤ r). It follows that ∇(hν ◦ ψi) is also bounded by a636

multiple of ψ
1/2
i on ψ−1

i (≤ r), and that ∇(hν ◦ψi) is continuous on RnN . This proves637

part (a).638

Since Bi,kψ = Bi,kψi, we have639

(Xmψ)(p) = (hν ◦ ψi)(p) (Bi,kψi)(p)640

for every p ∈ RnN . By Proposition 3.7 (a), the function Bi,kψi = 〈∇ψi, Bi,k〉 is641

bounded by a multiple of ψ
1/2
i on ψ−1

i (≤ r). Because of part (a), we conclude642

that Xmψ is bounded by a multiple of ψ
3/2
i on ψ−1

i (≤ r). Moreover, part (a) en-643

sures that Xmψ is at least of class C1, and therefore we can compute644

∇(Xmψ)(p) = (Bi,kψi)(p)∇(hν ◦ ψi)(p) + (hν ◦ ψi)(p)∇(Bi,kψi)(p)645

for every p ∈ RnN . We obtain from Proposition 3.7 (b) that the vector field ∇(Bi,kψi)646

is bounded by a constant on ψ−1
i (≤ r). Using again Proposition 3.7 (a) and part (a) for647

the other constituents of ∇(Xmψ), we derive that ∇(Xmψ) is bounded by a multiple648

of ψi on ψ−1
i (≤ r). It follows that there exists c > 0 such that649

‖∇(Xmψ)(q)−∇(Xmψ)(p)‖ ≤ c |ψi(q)− ψi(p)|650

for every p ∈ Zi, and every q ∈ ψ−1
i (≤ r). This implies that the derivative of ∇(Xmψ)651

exists and vanishes at every p ∈ Zi. Since hν ◦ψi is of class C2 on Ui, we can compute652

D2(hν ◦ψi)(p)(v, w) = (h′′ν ◦ψi)(p) 〈∇ψi(p), v〉 〈∇ψi(p), w〉+(h′ν ◦ψi)(p) D2ψi(p)(v, w)653

for every p ∈ Ui and all v, w ∈ RnN . Because of (Piv), the function h′ν ◦ψi is bounded654

by a constant on Ui ∩ ψ−1
i (≤ r), and because of (Pv), the function (h′′ν ◦ ψi)ψi is655

bounded by a constant on Ui ∩ψ−1
i (≤ r). By Proposition 3.7 (a), the gradient ∇ψi is656

bounded by a multiple of ψ
1/2
i on ψ−1

i (≤ r). By Proposition 3.7 (b), D2ψi is bounded657

by a constant on ψ−1
i (≤ r). It follows that D2(hν ◦ ψi) is bounded by a constant on658

Ui ∩ ψ−1
i (≤ r). We compute659

D2(Xmψ)(p)(v, w) = D2(hν ◦ ψi)(p)(v, w) (Bi,kψi)(p)660

+ 〈∇(hν ◦ ψi)(p), v〉 〈∇(Bi,kψi)(p), w〉661

+ 〈∇(hν ◦ ψi)(p), w〉 〈∇(Bi,kψi)(p), v〉662

+ (hν ◦ ψi)(p) D2(Bi,kψi)(p)(v, w)663664
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for every p ∈ Ui and all v, w ∈ RnN . We obtain from Proposition 3.7 (b) that the665

map D2(Bi,kψi) is bounded by a constant on ψ−1
i (≤ r). For the other constituents666

of D2(Xmψ), we already know boundedness properties on Ui ∩ ψ−1
i (≤ r). This way,667

we conclude that D2(Xmψ) is bounded by multiple of ψ
1/2
i on Ui ∩ ψ−1

i (≤ r). Since668

we already know that the second derivative of (Xmψ) exists and vanishes on Zi, it669

follows that D2(Xmψ) exists as a continuous map on RnN , and that it is bounded by670

a multiple of ψ
1/2
i on ψ−1

i (≤ r).671

Note that, for every i ∈ {1, . . . , N}, we have ψi ≤ ψ on RnN . This implies that672

ψ−1(≤ r) is a subset of ψ−1
i (≤ r) for every r > 0 and every i ∈ {1, . . . , N}. In the673

next step, we use Lemma 5.1 to derive the following result.674

Lemma 5.2. Let m` = (i`, k`, ν`) ∈ Λ for ` = 1, 2, 3 and let r > 0.675

(a) (i) Xm1 is of class C1 on RnN , and bounded by a multiple of ψ on ψ−1(≤ r).676

(ii) (DXm1
)Xm2

is of class C0 on RnN , and bounded by a multiple of ψ3/2677

on ψ−1(≤ r).678

(b) (i) Xm1
ψ is of class C2 on RnN , and bounded by a multiple of ψ3/2 on679

ψ−1(≤ r).680

(ii) Xm2(Xm1ψ) is of class C1 on RnN , and bounded by a multiple of ψ2 on681

ψ−1(≤ r).682

(iii) Xm3
(Xm2

(Xm1
ψ)) is of class C0 on RnN , and bounded by a multiple683

of ψ5/2 on ψ−1(≤ r).684

Proof. Because of Lemma 5.1 (a), the vector field Xm1
= (hν1 ◦ ψi1)Bi1,k1 is of685

class C1, and it is bounded by a multiple of ψ on ψ−1(≤ r). We also obtain from686

Lemma 5.1 (a) that ∇(hν1 ◦ψi1) is of class C0 and bounded by a multiple of ψ3/2 on687

ψ−1(≤ r). It follows that the same is true for the derivative of Xm1
. This implies the688

second statement of part (a).689

To prove part (b), note that by Lemma 5.1 (b), the function Xm1
ψ is of class C2690

and also bounded by a multiple of ψ3/2 on ψ−1(≤ r). In particular, we can compute691

the Lie derivatives692

Xm2
(Xm1

ψ) = (hν2 ◦ ψi2) (Bi2,k2(Xm1
ψ)),693

Xm3
(Xm2

(Xm1
ψ)) = (hν3 ◦ ψi3) (Bi3,k3(hν2 ◦ ψi2)) (Bi2,k2(Xm1

ψ))694

+ (hν3 ◦ ψi3) (hν2 ◦ ψi2) (Bi3,k3(Bi2,k2(Xm1
ψ))),695696

which are of class C1 and C0, respectively. The asserted boundedness properties of697

Xm2
(Xm1

ψ) and Xm3
(Xm2

(Xm1
ψ)) now follow immediately from Lemma 5.1.698

Because of Lemma 5.2 (a), for every i = 1, . . . , N and every k = 1, . . . , n, the Lie699

bracket [X(i,k,1), X(i,k,2)] of X(i,k,1), X(i,k,2) exists as a continuous vector field on RnN .700

Thus,701

(5.3) Y :=
1

2

N∑
i=1

n∑
k=1

[X(i,k,1), X(i,k,2)] : RnN → RnN702

is also a well-defined continuous vector on RnN . In fact, one can show that Y is of703

class C1, but we do not need this property in the following. Moreover, we define a704

function h : R→ R by h(y) := 0 for y ≤ 0, and by705

h(y) := [h1, h2](y)706

This manuscript is for review purposes only.



18 R. SUTTNER AND Z. SUN

for y > 0 with [h1, h2](y) as in (4.3). Using the identity Bi,kψ = Bi,kψi, a direct707

computation shows that708

[X(i,k,1), X(i,k,2)] = (h ◦ ψi) (Bi,kψ)Bi,k709

holds on RnN for i = 1, . . . , N and k = 1, . . . , n. Thus, the vector field Y is given by710

(5.4) Y =
1

2

N∑
i=1

n∑
k=1

(h ◦ ψi) (Bi,kψ)Bi,k.711

It is now easy to see that the differential equation ṗ = Y (p) in RnN coincides with712

the N coupled differential equations (4.12) in Rn. As indicated earlier, in a neighbor-713

hood of the set (4.9), the system state of (4.12) is constantly driven into a descent714

direction of ψ. We make this statement more precise by providing an estimate for the715

Lie derivative of ψ along Y :716

Lemma 5.3. There exist c, r > 0 such that717

(Y ψ)(p) ≤ −c ‖∇ψ(p)‖4718

for every p ∈ ψ−1(≤ r).719

Proof. Since we assume that h1, h2 satisfy property (Pvi) in Subsection 4.2, there720

exist ch, r > 0 such that h(y) ≤ −ch y for every y ∈ [0, r]. Because of (5.4), this721

implies722

Y ψ ≤ −ch
N∑
i=1

n∑
k=1

ψi (Bi,kψ)2
723

on ψ−1(≤ r). We obtain from Proposition 3.7 (a) that for every i ∈ {1, . . . , N}, there724

exists ci > 0 such that for every k ∈ {1, . . . , n}, we have725

ψi ≥ ci ‖∇ψi‖2 ≥ ci (Bi,kψi)
2 = ci (Bi,kψ)2

726

on ψ−1(≤ r). Thus, there exists c̃ > 0 such that727

Y ψ ≤ −c̃
N∑
i=1

n∑
k=1

(Bi,kψ)4
728

on ψ−1(≤ r). Note that the sum on the right-hand side is the 4th power of the729

4-norm of the vector field with components Bi,kψ. On the other hand, we have730

‖∇ψ‖2 =
∑N
i=1

∑n
k=1(Bi,kψ)2 since the vector fields Bi,k form an orthonormal frame731

of RnN . Since all norms on RnN are equivalent, the asserted estimate follows.732

5.2. Averaging. The next step in the analysis of the closed-loop system (5.2)733

addresses the trigonometric functions um therein. Instead of the differential equa-734

tion (5.2), it is more convenient to consider the corresponding integral equation. Re-735

peated integration by parts on the right-hand side of this integral equation shows that736

the functions um give rise to an averaged vector field, which consists of Lie brack-737

ets of the Xm. A much more general treatment of this averaging procedure is done738

in [22, 23, 24, 41, 27, 28]. In the following, we introduce the notation from [27, 28].739

For every m = (i, k, ν) ∈ Λ, define two complex constants η±ωi,k,m ∈ C as fol-740

lows. If ν = 1, let η±ωi,k,m :=
√
ωi,k e±iϕi,k/2, and otherwise, i.e., if ν = 2, let741
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η±ωi,k,m := ±√ωi,k e±iϕi,k/(2i), where i denotes the imaginary unit. Moreover, let742

Ω(m) := {±ωi,k}. Then, we can write um in (4.5) as743

um(t) =
∑

ω∈Ω(m)

ηω,m eiωt
744

for every t ∈ R. Additionally, define two functions vm, ŨV m : R→ R by745

vm(t) := 0,746

ŨV m(t) := −
∑

ω∈Ω(m)

ηω,m
iω

eiωt.747

748

For all m,m′ ∈ Λ, define vm′,m, ŨV m′,m : R→ R by749

vm′,m(t) := −
∑

(ω′,ω)∈Ω(m′)×Ω(m)
ω′+ω=0

ηω′,m′ ηω,m
iω

,750

ŨV m′,m(t) :=
∑

(ω′,ω)∈Ω(m′)×Ω(m)
ω′+ω 6=0

ηω′,m′ ηω,m
i2 ω(ω′ + ω)

ei(ω′+ω)t.751

752
753

Remark 5.4. Suppose that the frequency coefficients ωi,k are given by (4.6) in754

Example 4.3. Then, it follows directly from the definition of the functions ŨV m755

and ŨV m′,m that there exists c > 0 such that756 ∣∣ŨV m(t)
∣∣ ≤ c√

ω
and

∣∣ŨV m′,m(t)
∣∣ ≤ c

ω
757

for all m,m′ ∈ Λ and every t ∈ R. This shows that the ŨV m and ŨV m′,m converge758

uniformly to 0 as the global frequency parameter ω tends to ∞. We will address this759

convergence property again in Remark 5.7 and in Section 6.760

A direct computation reveals that the above functions are related as follows.761

Lemma 5.5. Let m1 = (i1, k1, ν1),m2 = (i2, k2, ν2) ∈ Λ and t0, t ∈ R. Then:762 ∫ t

t0

(
vm1

(s)− um1
(s)
)

ds = ŨV m1
(t)− ŨV m1

(t0),763 ∫ t

t0

(
vm2,m1

(s)− um2
(s) ŨV m1

(s)
)

ds = ŨV m2,m1
(t)− ŨV m2,m1

(t0),764

765

and766

vm2,m1(t) =

 + 1
2 if (i2, k2) = (i1, k1) and ν2 = 1 and ν1 = 2,
− 1

2 if (i2, k2) = (i1, k1) and ν2 = 2 and ν1 = 1,
0 otherwise.

767

We omit the proof here, and refer the reader instead to the computations in the proof768

of the main theorem in [27].769

Because of Lemma 5.5, we have770

(5.5)
∑

m1,m2∈Λ

vm2,m1
Xm2

(Xm1
ψ) =

1

2

N∑
i=1

n∑
k=1

([X(i,k,1), X(i,k,2)]ψ)(p) = Y ψ,771
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where the vector field Y : RnN → RnN is given by (5.3). Next, we write down the772

propagation of ψ along trajectories of (5.2) as an integral equation, which consists773

of the averaged part (5.5) and a remainder part. Recall that we already know from774

Proposition 4.6 that there exists a unique global solution of (5.2) for any initial775

condition.776

Proposition 5.6. Let γ : R→ RnN be a trajectory of (5.2). Then777

ψ(γ(t)) = ψ(γ(t0)) +

∫ t

t0

(Y ψ)(γ(s)) ds− (D1ψ)(t0, γ(t0))(5.6a)778

+ (D1ψ)(t, γ(t)) +

∫ t

t0

(D2ψ)(s, γ(s)) ds(5.6b)779

780

for all t0, t ∈ R, where D1ψ,D2ψ : R× RnN → R are defined by781

(D1ψ)(s, p) := −
∑
m1∈Λ

ŨV m1
(s) (Xm1

ψ)(p)(5.7a)782

−
∑

m1,m2∈Λ

ŨV m2,m1
(s) (Xm2

(Xm1
ψ))(p),(5.7b)783

(D2ψ)(s, p) :=
∑

m1,m2,m3∈Λ

um3
(s) ŨV m2,m1

(s) (Xm3
(Xm2

(Xm1
ψ)))(p)(5.7c)784

785

for all (s, p) ∈ R× RnN .786

Proof. When we integrate the derivative of ψ ◦ γ : R→ R, we obtain787

ψ(γ(t)) = ψ(γ(t0)) +
∑
m1∈Λ

∫ t

t0

um1
(s) (Xm1

ψ)(γ(s)) ds,788

because γ is a solution of (5.2). We know from Lemma 5.2 (b) that each of the Lie789

derivatives Xm1
ψ is of class C2. Thus, we can apply integration by parts, which leads790

to791

ψ(γ(t)) = ψ(γ(t0)) +
∑

m1,m2∈Λ

∫ t

t0

um2(s) ŨV m1(s) (Xm2(Xm1ψ))(γ(s)) ds792

+
∑
m1∈Λ

ŨV m1
(t0) (Xm1

ψ)(γ(t0))−
∑
m1∈Λ

ŨV m1
(t) (Xm1

ψ)(γ(t))793

794

because of Lemma 5.5. Now we add and subtract vm2,m1
(s)Xm2

(Xm1
ψ)(γ(s)) in each795

of the above integrals. Note that by Lemma 5.2 (b), the Lie derivatives Xm2
(Xm1

ψ)796

are of class C1. Thus, we can apply again integration by parts and also Lemma 5.5797

to obtain798

ψ(γ(t)) = ψ(γ(t0)) +
∑

m1,m2∈Λ

∫ t

t0

vm2,m1
(s)Xm2

(Xm1
ψ)(γ(s))ds799

− (D1ψ)(t0, γ(t0)) + (D1ψ)(t, γ(t)) +

∫ t

t0

(D2ψ)(s, γ(s)) ds,800

801

where the functions D1ψ,D2ψ : R × RnN → R are defined as in (5.7). The asserted802

equation (5.6) now follows immediately from (5.5).803
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Remark 5.7. By Lemma 5.3, the averaged contribution Y ψ in (5.6) is strictly804

negative as long as the gradient of the global potential function ψ is nonvanishing.805

This term leads to the desired effect that the value of ψ decreases along trajectories806

of (5.2) if the remainder terms D1ψ,D2ψ in (5.7) are sufficiently small. The terms807

D1ψ,D2ψ consist of the following two contributions:808

(A) The time-varying functions ŨV m1
, ŨV m2,m1

, um3
ŨV m2,m1

. Suppose that the809

frequency coefficients ωi,k are given by (4.6) in Example 4.3. We conclude810

from Remark 5.4 that these functions converge uniformly to 0 when the global811

frequency parameter ω tends to ∞.812

(B) The Lie derivatives Xm1ψ, Xm2(Xm1ψ), and Xm3(Xm2(Xm1ψ)). We con-813

clude from Lemma 5.2 (b) that these functions become small when the agents814

are close to the set (4.9) of target formations.815

The Lie derivatives in (B) ensure that the remainder terms D1ψ,D2ψ vanish suffi-816

ciently fast when the value of the global potential function ψ approaches its optimal817

value 0. Roughly speaking, this is the reason why Theorem 4.7 guarantees the ex-818

istence of a small r > 0 for which the sublevel set ψ−1(≤ r) is in the domain of819

attraction. A large global frequency parameter ω leads to the effect that the func-820

tions in (A) are small. This way one can ensure that D1ψ,D2ψ remain sufficiently821

small in a larger sublevel set of ψ. Thus, when we increase ω, the influence of the822

averaged vector field Y dominates in a larger sublevel set of ψ. This effect is also823

observed in the numerical simulations in Subsection 4.3.824

5.3. Proof of Theorem 4.7. Recall that system (4.1) under control (4.7) can825

be written as the closed-loop system (5.2). We already know from Proposition 4.6826

that there exists a unique global solution of (5.2) for any initial condition.827

Since we assume that for every element p of (4.9), the framework G(p) is in-828

finitesimally rigid, Proposition 3.7 (c) ensures that there exist cψ, rψ > 0 such that829

‖∇ψ(p)‖2 ≥ cψ ψ(p) for every p ∈ ψ−1(≤ rψ). Because of Lemma 5.3, it follows that830

there exist cY > 0 and rY ∈ (0, rψ) such that831

(5.8) (Y ψ)(p) ≤ −cY ψ(p)2
832

for every p ∈ ψ−1(≤ rY ). Now we take a look at the constituents of the functions833

D1ψ,D2ψ : R× RnN → R, which are defined in (5.7). It can be easily deduced from834

their definitions that the functions ŨV m1 , ŨV m2,m1 , and um3 in (5.7) are bounded.835

Moreover, we know from Lemma 5.2 (b) that the Lie derivatives of ψ along the Xm836

are bounded by multiples of certain powers of ψ on ψ−1(≤ rY ). This implies that837

there exist c1, c2 > 0 such that838

|(D1ψ)(s, p)| ≤ c1 ψ(p)3/2,(5.9a)839

|(D2ψ)(s, p)| ≤ c2 ψ(p)5/2(5.9b)840841

for every s ∈ R and every p ∈ ψ−1(≤ rY ). We apply estimates (5.8) and (5.9) to (5.6),842

and obtain843

ψ(γ(t)) ≤ ψ(γ(t0)) + c1 ψ(γ(t0))3/2 + c1 ψ(γ(t))3/2
844

−
∫ t

t0

(
cY ψ(γ(s))2 − c2 ψ(γ(s))5/2

)
ds845

846

for t0, t ∈ R with t > t0 if γ is a trajectory of (5.2) such that ψ(γ(s)) ≤ rY for847

every s ∈ [t0, t]. We choose r ∈ (0, rY /2) sufficiently small such that 1 + c1 (2r)1/2 <848
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2(1− c1 (2r)1/2) and such that c := (cY − c2 (2r)1/2)/2 > 0. Then, we have849

(5.10) ψ(γ(t)) ≤ 2ψ(γ(t0))− 2 c

∫ t

t0

ψ(γ(s))2 ds850

for t0, t ∈ R with t > t0 if γ is a trajectory of (5.2) such that ψ(γ(s)) ≤ 2r for every851

s ∈ [t0, t]. This implies that (5.10) holds in fact for every trajectory γ of (5.2) and852

all t0, t ∈ R with t > t0 if ψ(γ(t0)) ≤ r. It is now easy to see that the integral853

inequality (5.10) implies the asserted estimate (4.10).854

It is left to prove that the trajectories of (5.2) with initial values in ψ−1(≤ r)855

converge to some point of (4.9). For this purpose, fix a trajectory γ of (5.2) with856

ψ(γ(t0)) ≤ r for some t0 ∈ R. We already know from (4.10) that ψ(γ(t)) ≤ 2r for857

every t > t0. We write (5.2) as an integral equation and then we apply integration by858

parts on the right-hand side. Because of Lemma 5.5, this leads to859

γ(t2) = γ(t1) +
∑

m1,m2∈Λ

∫ t2

t1

um2
(s) ŨV m1

(s) DXm1
(γ(s))Xm2

(γ(s)) ds860

+
∑
m1∈Λ

ŨV m1
(t1)Xm1

(γ(t1))−
∑
m1∈Λ

ŨV m1
(t2)Xm1

γ(t2)861

862

for all t2, t1 ≥ t0. It can be easily deduced from their definitions that the functions um2
863

and ŨV m1
are bounded. Moreover, we know from Lemma 5.2 (a) that the maps Xm1

864

and (DXm1)Xm2 are bounded by multiples of ψ and ψ3/2 on ψ−1(≤ 2r), respectively.865

Thus, there exist constants c′, c′′ > 0 such that866

∥∥γ(t2)− γ(t1)
∥∥ ≤ c′ ψ(γ(t1)) + c′ ψ(γ(t2)) + c′′

∫ t2

t1

ψ(γ(s))3/2 ds867

for all t1, t2 ∈ R with t2 ≥ t1 ≥ t0. Now we apply estimate (4.10) and obtain868

∥∥γ(t2)− γ(t1)
∥∥ ≤ 4ψ(p0)

1 + c ψ(p0) (t1 − t0)
+ c′′

∫ t2

t1

( 2ψ(p0)

1 + c ψ(p0) (s− t0)

)3/2

ds869

for all t1, t2 ∈ R with t2 ≥ t1 ≥ t0, where p0 := γ(t0). This implies that for every870

ε > 0, there exists T > t0 such that
∥∥γ(t2)− γ(t1)

∥∥ ≤ ε for all t2 ≥ t1 ≥ T . It follows871

that γ(t) converges to some p ∈ RnN as t → ∞. Since ψ(γ(t)) → 0 as t → ∞, we872

conclude that p is an element of (4.9).873

6. Comparison to related approaches. The aim of this section is to relate874

our approach to other known control strategies and to indicate how it can be extended875

to a more general situation. For the sake of simplicity, we restrict our discussion to a876

control-affine system of the form877

ṗ =

µ∑
k=1

uk Bk(p),(6.1)878

y = ψ(p)(6.2)879880

with smooth control vector fields B1, . . . , Bµ : Rn → Rn, and a nonnegative smooth881

output function ψ : Rn → R. System (6.1) can be steered by specifying a control882

law for the real-valued input channels u1, . . . , uµ. We assume that the nonnegative883
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function ψ attains its smallest possible value 0 at some point of Rn, i.e., the zero set884

ψ−1(0) ⊆ Rn is not empty. In the context of formation control, one can interpret (6.1)885

as the kinematic equations (4.1) of a single agent who can only measure the current886

value (6.2) of its individual potential function (4.2). The current system state p(t) ∈887

Rn is treated as an unknown quantity. Our aim is to find time-varying output feedback888

that steers the system to the set of desired states ψ−1(0).889

There are several ways to generalize the above situation. For instance, instead890

of a single system, one can consider a “team” of control-affine systems with individ-891

ual output functions on a smooth manifold. One can also include an explicit time892

dependence of the control vector fields or a drift vector field which satisfies suitable893

boundedness conditions; cf. [42]. Moreover, by imposing the assumption that the894

control vector fields and the output function have suitable invariance properties (such895

as translational invariance), it is also possible to treat the case in which ψ−1(0) is896

not necessarily compact. Our study of the formation control problem in the previous897

sections indicates how this can be done (cf. Remark 3.8). Since we want to keep the898

discussion brief and simple, we do not address these generalizations in the following.899

The task of steering a dynamical system to a minimum of its output function900

based on real-time measurements of the output values, is extensively studied in the901

literature on extremum seeking control. The reader is referred to [3, 39, 44] for an902

overview. We show in the following paragraphs that the control law (4.7) can be903

seen as a particular implementation of a more general strategy, which is also applied904

in the context of extremum seeking control; see, e.g., [13, 15, 10, 36, 37, 38]. We905

explain the strategy by the example of system (6.1) with output (6.2). Since we906

want to steer the system to the set of global minima of ψ it is certainly desirable to907

have information about descent directions of ψ. Note that for every k ∈ {1, . . . , µ}908

and every p ∈ Rn, the vector −(Bkψ)(p)Bk(p) points into such a descent direction,909

where (Bkψ)(p) is the Lie derivative of ψ along Bk at p; cf. Section 2. Thus, the910

control law uk = −(Bkψ)(p) for k = 1, . . . , µ would be a promising candidate for911

our purpose. Since we can only measure the values of ψ but not its derivative, this912

control law cannot be implemented directly. However, there is a way to circumvent913

this obstacle. A direct computation shows that the vector field −(Bkψ)Bk is equal914

to the Lie bracket of the vector fields ψBk and Bk, where ψBk : Rn → Rn is given by915

(ψBk)(p) = ψ(p)Bk(p). Note that the vector field ψBk only depends on ψ but not916

its derivative. This choice of the Lie bracket, which is due to [13], is not the only way917

to get access to −(Bkψ)Bk. Another option, which appears in [38], is the Lie bracket918

of the vector fields (sinψ)Bk and (cosψ)Bk. More general, choose two functions919

h1, h2 : R → R, which are specified later, and define vector fields Xm : Rn → Rn as920

in (5.1) by921

Xm(p) := hν(ψ(p))Bk(p)922

for every pair m = (k, ν) with k ∈ {1, . . . , µ} and ν ∈ {1, 2}. Note that if h1, h2 are923

differentiable at y := ψ(p) for some p ∈ Rn, then we have924

[X(k,1), X(k,2)](p) = [h1, h2](y) (Bkψ)(p)Bk(p),925

where [h1, h2](y) is defined by (4.3). A systematic investigation on how h1, h2 can be926

chosen such that [X(k,1), X(k,2)] equals −(Bkψ)Bk is done in [17]. As in Section 5, we927

denote by Λ the set of all tuples (k, ν) with k ∈ {1, . . . , µ} and ν ∈ {1, 2}.928

So far we have only rewritten certain descent directions of ψ in terms of Lie929

brackets. However, it is not clear yet how system (6.1) can be steered into these930

directions by means of output feedback. The idea is to use a suitable approximation931
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of Lie Brackets. For this purpose, we choose for every m ∈ Λ a family (uωm)ω>0 of932

Lebesgue measurable and bounded functions uωm : R → R, which are specified later.933

For every positive real number ω, we consider system (6.1) under the control law934

uk = uω(k,1)(t)h1(ψ(p)) + uω(k,2)(t)h2(ψ(p))935

for k = 1, . . . , µ, which leads to the closed-loop system936

Σω : ṗ =
∑
m∈Λ

uωm(t)Xm(p),937

cf. (5.2). We can interpret each Σω as a control-affine system with control vector938

fields Xm and open-loop controls uωm. It is known from [22, 23, 24, 41, 27, 28] that939

if the vector fields Xm are of class C1, and if the families (uωm)ω>0 satisfy certain940

averaging conditions in the limit ω →∞, then, for any fixed initial condition (t0, p0),941

the trajectories of the systems Σω converge on a compact interval in the limit ω →∞942

to the trajectory of943

Σ∞ : ṗ = Y (p) :=
1

2

µ∑
k=1

[X(k,1), X(k,2)](p)944

with initial condition (t0, p0). Note that Y : Rn → Rn corresponds to the vector field945

in (5.3). The convergence property of trajectories holds, if the functions h1, h2 are of946

class C1 and if we let947

uω(k,1)(t) :=
√
ωΩk cos(ωΩk t+ ϕk),948

uω(k,2)(t) :=
√
ωΩk sin(ωΩk t+ ϕk),949

950

for k = 1, . . . , µ, where Ω1, . . . ,Ωµ > 0 are pairwise distinct positive real numbers,951

and ϕ1, . . . , ϕµ ∈ R are arbitrary. Note that we use the same trigonometric functions952

in Subsection 4.2. The averaging conditions that we mentioned earlier are indicated953

in Remark 5.4 and Lemma 5.5. The general theory is presented in [27, 28], where the954

frequency parameter ω is treated as a sequence index j.955

Assume that we have chosen the functions h1, h2 in a suitable way so that the956

set of desired states ψ−1(0) is locally asymptotically stable for Σ∞. Under suitable957

averaging assumptions on the families (uωm)ω>0 in the limit ω →∞ and also smooth-958

ness assumptions on the vector fields Xm, it is shown in [13] that the convergence of959

trajectories is in fact uniform with respect to the initial time and also uniform with960

respect to the initial state within compact sets. This stronger notion of convergence961

of trajectories ensures that the set of desired states ψ−1(0) becomes practically locally962

uniformly asymptotically stable for Σω if ω is chosen sufficiently large. The word uni-963

form refers to uniformity with respect to the time parameter. Moreover, practically964

means that the trajectories of Σω are only attracted by a neighborhood of ψ−1(0) but965

not by ψ−1(0) itself. However, it is not known how large the frequency parameter ω966

has to be chosen to ensure practical stability.967

The proof of practical stability for Σω in [13] is based on a suitable averaging968

analysis, which leads to a similar integral equation as (5.6) in Proposition 5.6. This969

integral equation also contains the averaged vector field Y of Lie brackets and two970

time-varying remainder vector fields Dω
1 and Dω

2 , which additionally depend on the971

frequency parameter ω > 0. When ω tends to ∞, the vector fields Dω
1 , D

ω
2 vanish972

and only Y remains. This roughly explains why local asymptotic stability of Σ∞973
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induces practical local asymptotic stability of Σω when ω is sufficiently large. The974

same effect for large ω is also discussed in Remark 5.7. Note that a large frequency975

parameter ω alone only leads to practical local asymptotic stability. To obtain the976

full notion of local asymptotic stability for Σω, it is also necessary to ensure that977

the remainders Dω
1 , D

ω
2 vanish sufficiently fast when the system state approaches978

the set ψ−1(0) of desired states. In the present paper, we derive the corresponding979

boundedness properties in Subsection 5.1. A similar approach can be found in [17, 42].980

However, the results in [17, 42] only ensure local asymptotic stability if ω > 0 is981

sufficiently large. Our main result, Theorem 4.7, guarantees local asymptotic stability982

with a possibly small domain of attraction even if the frequencies are small. The983

domain of attraction increases if we choose large frequencies, since this leads to smaller984

remainders Dω
1 , D

ω
2 , cf. Remark 5.7. Finally, it is worth to mention that similar results985

also appear in [30, 31] for the stabilization of homogeneous systems. They also rely on986

a combination of averaging and suitable boundedness properties of the vector fields987

and their derivatives.988

We return to system (6.1) with output (6.2). Let h1, h2 : R → R be two func-989

tions with the properties (Pi)-(Pvi) in Subsection 4.2. Let ω1, . . . , ωµ be pairwise990

distinct positive real constants, and let ϕ1, . . . , ϕµ ∈ R. For k = 1, . . . , µ, define991

u(k,1), u(k,2) : R→ R by992

u(k,1)(t) :=
√
ωk cos(ωkt+ ϕk),993

u(k,2)(t) :=
√
ωk sin(ωkt+ ϕk).994995

Following (4.7), we propose the output-feedback control law996

(6.3) uk = uk,1(t)h1(ψ(p)) + uk,1(t)h2(ψ(p))997

for k = 1, . . . , µ to steer (6.1) to a minimum of ψ. We remark that an implementation998

of (6.3) requires no other information than real-time measurements of the output (6.2).999

The same argument as in the proof of Lemma 5.1 (a) shows that the functions hν ◦ψ,1000

with ν = 1, 2, are of class C1. This ensures that (6.1) under (6.3) has a unique1001

maximal solution for every initial condition. For every r > 0, define the sublevel set1002

ψ−1(≤ r) := {p ∈ Rn | ψ(p) ≤ r}.1003

Following the analysis in Section 5, it is now easy to derive the following result.1004

Theorem 6.1. Assume that there exists p∗ ∈ Rn such that the following condi-1005

tions are satisfied:1006

(i) The point p∗ with ψ(p∗) = 0 is a strict local minimum of ψ and the second1007

derivative of ψ at p∗ is positive definite;1008

(ii) There exists a neighborhood W ⊆ Rn of p∗ such that for every p ∈ W , the1009

vectors B1(p), . . . , Bµ(p) span Rn.1010

Then, there exist constants c, r > 0 such that for every t0 ∈ R, and every p0 ∈ Rn1011

in the connected component of ψ−1(≤ r) containing p∗, the maximal solution γ of1012

system (6.1) under the control law (6.3) with initial condition γ(t0) = p0 exists on1013

[t0,∞), and γ(t) converges to p∗ as t→∞ with1014

(6.4) ψ(γ(t)) ≤ 2ψ(p0)

1 + c ψ(p0) (t− t0)
1015

for every t ≥ t0.1016
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Note that the assumption of infinitesimal rigidity of the target formations in Theo-1017

rem 4.7 is replaced in Theorem 6.1 by assumption (i). Because of Lemma 3.6, this1018

assumption ensures that estimate (3.5) in Proposition 3.7 (c) is satisfied for the output1019

function ψ in a neighborhood of p∗. In the context of formation control, the velocity1020

directions bi,k of the agents in (4.1) span the entire Euclidean space at any point.1021

This property is locally ensured in Theorem 6.1 by assumption (ii).1022

We remark that Theorem 6.1 assumes that the set of desired states consists only1023

of a single point p∗. The result can be extended to a possibly noncompact set of1024

desired states if the control vector fields B1, . . . , Bµ and the output function ψ have1025

suitable invariance properties. For example, for point agents in the Euclidean space,1026

we have invariance under the action of the Euclidean group, which reduces the set1027

of target formations to finitely many orbits. The analysis in Section 5 also indicates1028

how Theorem 6.1 can be extended to multiple control systems with individual output1029

functions.1030

As explained in Remark 5.7, the magnitude r > 0 of the sublevel ψ−1(≤ r)1031

depends on the choice of the frequency coefficients ω1, . . . , ωµ. Under suitable as-1032

sumptions, it is also possible to extend Theorem 6.1 from a local to a semi-global1033

stability result. For this purpose, assumption (i) has to be replaced by the conditions1034

that p∗ is a strict global minimum of ψ, that the second derivative of ψ at p∗ is posi-1035

tive definite, and that ψ has no other stationary points than p∗. Assumption (ii) has1036

to be replaced by the condition that the vectors B1(p), . . . , Bµ(p) span Rn for every1037

p ∈ Rn. Finally, in addition to the properties (Pi)-(Pvi) in Subsection 4.2, one has1038

to ensure that [h1, h2](y) < 0 holds for every y > 0. For instance, this is satisfied1039

if h1, h2 are chosen as in Example 4.1. Then, for every compact neighborhood K01040

of p∗ in Rn, one can find sufficiently large frequencies ω1, . . . , ωµ such that K0 is uni-1041

formly asymptotically stable for system (6.1) under the control law (6.3) with K0 in1042

the domain of attraction.1043

Finally, we compare Theorem 6.1 to the results in the studies on extremum seeking1044

control by Lie bracket approximations that we cited earlier in this section. The main1045

advantage of Theorem 6.1 is that local uniform asymptotic stability can be obtained1046

even if the pairwise distinct frequencies ωk > 0, k = 1, . . . , µ, are arbitrarily small.1047

So far, the results in the literature only ensure (practical) asymptotic stability if the1048

frequencies ωk as well as their distances |ωl − ωk| are chosen sufficiently large. In the1049

context of extremum seeking, the control vector fields as well as the output function are1050

treated as unknown quantities. Only real-time measurements of the output (6.2) are1051

available. For such a situation, there is no known rule how to obtain suitable values1052

for the ωk. The size of the domain of attraction is also not known. Theorem 6.11053

resolves at least some of these uncertainties by ensuring local uniform asymptotic1054

stability for any choice of pairwise distinct ωk. The domain of attraction might be1055

small but can be extended by choosing the frequencies ωk as well as their distances1056

|ωl −ωk| sufficiently large. As explained in the previous paragraph, it is also possible1057

to derive a semi-global uniform asymptotic stability result for system (6.1) under the1058

control law (6.3). Unlike many other similar approaches, the control law (6.3) can1059

lead to convergence to p∗ and not only to convergence to an unknown neighborhood1060

of p∗. Another advantage compared to other studies is the flexibility in the choice of1061

the frequencies. We do not assume that the ωk are rational multiples of each other.1062

It already suffices that they are pairwise distinct.1063

7. Conclusions and future work. We have shown that distance measure-1064

ments provide enough information to locally stabilize infinitesimally rigid target for-1065
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mations in the Euclidean space of arbitrary dimension. The proposed control law1066

is distributed, and its implementation requires only the currently sensed distances.1067

Certainly, a disadvantage compared to the well-established gradient-based control law1068

is the relatively small domain of attraction for small frequency coefficients. On the1069

other hand, our feedback law can lead to a closed-loop system without undesired equi-1070

libria. A promising direction for future research might be a suitable superposition of1071

both control laws. This, perhaps, could lead to global asymptotic stability. There1072

are several other potential applications for the proposed control strategy in the field1073

of multi-agent systems. Many distributed coordination algorithms involve potential1074

functions of inter-agent distances such as distributed navigation [26], swarming [8]1075

and flocking [35]. The implementation is usually derived from a distributed gradient1076

vector field of a potential function, which often requires relative position measure-1077

ments. Our approach can also be applied to these coordination control tasks, and1078

allows an implementation if only distance measurements are available.1079
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