13,110 research outputs found

    Pattern vectors from algebraic graph theory

    Get PDF
    Graphstructures have proven computationally cumbersome for pattern analysis. The reason for this is that, before graphs can be converted to pattern vectors, correspondences must be established between the nodes of structures which are potentially of different size. To overcome this problem, in this paper, we turn to the spectral decomposition of the Laplacian matrix. We show how the elements of the spectral matrix for the Laplacian can be used to construct symmetric polynomials that are permutation invariants. The coefficients of these polynomials can be used as graph features which can be encoded in a vectorial manner. We extend this representation to graphs in which there are unary attributes on the nodes and binary attributes on the edges by using the spectral decomposition of a Hermitian property matrix that can be viewed as a complex analogue of the Laplacian. To embed the graphs in a pattern space, we explore whether the vectors of invariants can be embedded in a low- dimensional space using a number of alternative strategies, including principal components analysis ( PCA), multidimensional scaling ( MDS), and locality preserving projection ( LPP). Experimentally, we demonstrate that the embeddings result in well- defined graph clusters. Our experiments with the spectral representation involve both synthetic and real- world data. The experiments with synthetic data demonstrate that the distances between spectral feature vectors can be used to discriminate between graphs on the basis of their structure. The real- world experiments show that the method can be used to locate clusters of graphs

    Perfect Matchings as IID Factors on Non-Amenable Groups

    Get PDF
    We prove that in every bipartite Cayley graph of every non-amenable group, there is a perfect matching that is obtained as a factor of independent uniform random variables. We also discuss expansion properties of factors and improve the Hoffman spectral bound on independence number of finite graphs.Comment: 16 pages; corrected missing reference in v

    On the extremal properties of the average eccentricity

    Get PDF
    The eccentricity of a vertex is the maximum distance from it to another vertex and the average eccentricity ecc(G)ecc (G) of a graph GG is the mean value of eccentricities of all vertices of GG. The average eccentricity is deeply connected with a topological descriptor called the eccentric connectivity index, defined as a sum of products of vertex degrees and eccentricities. In this paper we analyze extremal properties of the average eccentricity, introducing two graph transformations that increase or decrease ecc(G)ecc (G). Furthermore, we resolve four conjectures, obtained by the system AutoGraphiX, about the average eccentricity and other graph parameters (the clique number, the Randi\' c index and the independence number), refute one AutoGraphiX conjecture about the average eccentricity and the minimum vertex degree and correct one AutoGraphiX conjecture about the domination number.Comment: 15 pages, 3 figure

    Ubiquity of synonymity: almost all large binary trees are not uniquely identified by their spectra or their immanantal polynomials

    Full text link
    There are several common ways to encode a tree as a matrix, such as the adjacency matrix, the Laplacian matrix (that is, the infinitesimal generator of the natural random walk), and the matrix of pairwise distances between leaves. Such representations involve a specific labeling of the vertices or at least the leaves, and so it is natural to attempt to identify trees by some feature of the associated matrices that is invariant under relabeling. An obvious candidate is the spectrum of eigenvalues (or, equivalently, the characteristic polynomial). We show for any of these choices of matrix that the fraction of binary trees with a unique spectrum goes to zero as the number of leaves goes to infinity. We investigate the rate of convergence of the above fraction to zero using numerical methods. For the adjacency and Laplacian matrices, we show that that the {\em a priori} more informative immanantal polynomials have no greater power to distinguish between trees
    • …
    corecore