6,503 research outputs found

    Pascual Jordan, his contributions to quantum mechanics and his legacy in contemporary local quantum physics

    Full text link
    After recalling episodes from Pascual Jordan's biography including his pivotal role in the shaping of quantum field theory and his much criticized conduct during the NS regime, I draw attention to his presentation of the first phase of development of quantum field theory in a talk presented at the 1929 Kharkov conference. He starts by giving a comprehensive account of the beginnings of quantum theory, emphasising that particle-like properties arise as a consequence of treating wave-motions quantum-mechanically. He then goes on to his recent discovery of quantization of ``wave fields'' and problems of gauge invariance. The most surprising aspect of Jordan's presentation is however his strong belief that his field quantization is a transitory not yet optimal formulation of the principles underlying causal, local quantum physics. The expectation of a future more radical change coming from the main architect of field quantization already shortly after his discovery is certainly quite startling. I try to answer the question to what extent Jordan's 1929 expectations have been vindicated. The larger part of the present essay consists in arguing that Jordan's plea for a formulation without ``classical correspondence crutches'', i.e. for an intrinsic approach (which avoids classical fields altogether), is successfully addressed in past and recent publications on local quantum physics.Comment: More biographical detail, expansion of the part referring to Jordan's legacy in quantum field theory, 37 pages late

    L\"uders' and quantum Jeffrey's rules as entropic projections

    Full text link
    We prove that the standard quantum mechanical description of a quantum state change due to measurement, given by Lueders' rules, is a special case of the constrained maximisation of a quantum relative entropy functional. This result is a quantum analogue of the derivation of the Bayes--Laplace rule as a special case of the constrained maximisation of relative entropy. The proof is provided for the Umegaki relative entropy of density operators over a Hilbert space as well as for the Araki relative entropy of normal states over a W*-algebra. We also introduce a quantum analogue of Jeffrey's rule, derive it in the same way as above, and discuss the meaning of these results for quantum bayesianism

    Two-dimensional models as testing ground for principles and concepts of local quantum physics

    Full text link
    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factorizing models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL(2,Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular Euclideanization'' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J. A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an ``Encyclopedia of Mathematical Physics'' contribution hep-th/0502125.Comment: 55 pages, removal of some typos in section

    Classification of linear differential operators with an invariant subspace of monomials

    Full text link
    A complete classification of linear differential operators possessing finite-dimensional invariant subspace with a basis of monomials is presented.Comment: 10 p
    corecore