31,394 research outputs found

    An Edge-Swap Heuristic for Finding Dense Spanning Trees

    Get PDF
    Finding spanning trees under various restrictions has been an interesting question to researchers. A dense tree, from a graph theoretical point of view, has small total distances between vertices and large number of substructures. In this note, the density of a spanning tree is conveniently measured by the weight of a tree (defined as the sum of products of adjacent vertex degrees). By utilizing established conditions and relations between trees with the minimum total distance or maximum number of sub-trees, an edge-swap heuristic for generating dense spanning trees is presented. Computational results are presented for randomly generated graphs and specific examples from applications

    Structural Properties of Planar Graphs of Urban Street Patterns

    Full text link
    Recent theoretical and empirical studies have focused on the structural properties of complex relational networks in social, biological and technological systems. Here we study the basic properties of twenty 1-square-mile samples of street patterns of different world cities. Samples are represented by spatial (planar) graphs, i.e. valued graphs defined by metric rather than topologic distance and where street intersections are turned into nodes and streets into edges. We study the distribution of nodes in the 2-dimensional plane. We then evaluate the local properties of the graphs by measuring the meshedness coefficient and counting short cycles (of three, four and five edges), and the global properties by measuring global efficiency and cost. As normalization graphs, we consider both minimal spanning trees (MST) and greedy triangulations (GT) induced by the same spatial distribution of nodes. The results indicate that most of the cities have evolved into networks as efficienct as GT, although their cost is closer to the one of a tree. An analysis based on relative efficiency and cost is able to characterize different classes of cities.Comment: 7 pages, 3 figures, 3 table

    Graph measures and network robustness

    Full text link
    Network robustness research aims at finding a measure to quantify network robustness. Once such a measure has been established, we will be able to compare networks, to improve existing networks and to design new networks that are able to continue to perform well when it is subject to failures or attacks. In this paper we survey a large amount of robustness measures on simple, undirected and unweighted graphs, in order to offer a tool for network administrators to evaluate and improve the robustness of their network. The measures discussed in this paper are based on the concepts of connectivity (including reliability polynomials), distance, betweenness and clustering. Some other measures are notions from spectral graph theory, more precisely, they are functions of the Laplacian eigenvalues. In addition to surveying these graph measures, the paper also contains a discussion of their functionality as a measure for topological network robustness
    corecore