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Abstract

Finding spanning trees under various restrictions has been an interesting question
to researchers. A “dense” tree, from a graph theoretical point of view, has small total
distances between vertices and large number of substructures. In this note, the “den-
sity” of a spanning tree is conveniently measured by the weight of a tree (defined as
the sum of products of adjacent vertex degrees). By utilizing established conditions
and relations between trees with the minimum total distance or maximum number of
subtrees, an edge-swap heuristic for generating “dense” spanning trees is presented.
Computational results are presented for randomly generated graphs and specific exam-
ples from applications.

1 Introduction

Given an undirected graph G with vertex set V' and edge set E, a subtree of GG is a connected
acyclic subgraph of GG. A subtree with vertex set V' is a spanning tree of G. Finding spanning
trees (under various restrictions) of a given graph is of importance in many applications such
as Information Technology and Network Design.

Many questions have been studied in this aspect, including, but not limited to, the
well-known minimum-weight spanning tree problem (MSTP), spanning trees with bounded
degree, with bounded number of leaves, or with bounded number of branch vertices. The
goal in such studies is usually to find efficient algorithms to produce the desired subgraphs.
Recently an edge-swap heuristic for generating spanning trees with minimum number of
branch vertices was presented [7], where an efficient algorithm resulted from iteratively re-
ducing the number of branch vertices from a random spanning tree by swapping tree edges
with edges not currently in the tree.

A tree of given number of vertices is considered “dense” if the number of substructures
(including isomorphic subgraphs) is large or the total distance between vertices is small. In
applications, structures generated from such spanning trees are preferred as they have more
choices of sub-networks and allow more efficient transfer of resources with minimum cost.
In this note we discuss an edge-swap heuristic, inspired by similar work presented in [7], for
finding dense spanning trees.

2 Preliminaries

The number of subtrees and the total distance of a tree belong to a group of graph invariants,
called topological indices, that are used in the literature as effective descriptors of graph
structures. For instance:

e the sum of distances between all pairs of vertices, also known as the Wiener index [11],
is one of the most well known distance-based index in chemical graph theory;

e the number of subtrees is an example of counting-based indices introduced from pure-
mathematical point of view [§] and applications in phylogeny [2].
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These two indices have been extensively studied. In particular, it is well known that the star
minimizes the Wiener index and maximizes the number of subtrees while the path maximizes
the Wiener index and minimizes the number of subtrees. More interestingly, among tress
of given degree sequence, the greedy tree (Definition |1) was shown to minimize the Wiener
index [0, O, 12] and maximize the number of subtrees [13], where the degree sequence is
simply the nonincreasing sequence of vertex degrees.

Definition 1 (Greedy trees). Given a degree sequence, the greedy tree is achieved through
the following “greedy” algorithm.:

i) Start with a single vertex v = vy as the root and give v the appropriate number of
neighbors so that it has the largest degree;

i1) Label the neighbors of v as ve, vs, ..., assign to them the largest available degrees such
that deg(vs) > deg(vs) > -

iii) Label the neighbors of vy (except v) as voy, Ugg, ... such that they take all the largest
degrees available and that deg(ver) > deg(vgg) > - -+, then do the same for vs, vy, .. .;

iv) Repeat (iii) for all the newly labeled vertices, always start with the neighbors of the
labeled vertex with largest degree whose neighbors are not labeled yet.

For example, Fig. 1| shows a greedy tree with degree sequence

(4,4,4,3,3,3,3,3,3,3,2,2,1,...,1).

U1

(%) Vs

V21 8U220U23 V318U320U33 Us2

Figure 1: A greedy tree.

Interestingly, the greedy trees are also extremal with respect to many other graph indices,
among which is the following special case of the Randié index [3], also called the weight of a
tree [4]:

R(T) = Z deg(u)deg(v).

uwveE(T)

A comprehensive discussion of the extremal trees of given degree sequences with respect to
functions defined on adjacent vertex degrees can be found in [10].

For trees of different given degree sequences, much work has been done in comparing
the greedy trees (of the same order) of different degree sequence. In particular, for two
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nonincreasing sequences 7' = (d},--- ,d)) and 7" = (df,--- ,d!), 7" is said to majorize 7’ if
fork=1,--- ,n—1

k k n n
ddi<d dl and ) di=> d.
=0 1=0 1=0 1=0

The concept of majorization has been applied to the comparison of greedy trees of differ-
ent degree sequences in order to find the dense structures (with minimal total distance or
maximal number of subtrees) under various constraints. See [13] for an example of such
discussions. For convenience we also say that 7" is “higher in the majorization ladder” than
7" if 7" majorizes ' and 7" # 7'.

To find dense spanning trees, our edge-swap heuristic starts with a random spanning tree.
We then continuously remove a “bad” edge and add a “good” edge in order to improve the
density of the spanning tree. From the perspective of distance-based and structure-based
graph indices, evaluating the corresponding index of the resulted tree at each step would be
extremely time consuming.

We propose an edge-swap heuristic that is based on the above results and use R(T)
instead of the distance or number of subtrees as an effective measure. In every step, we
consider the degrees of the end vertices of the edge to be removed or added, as well as the
resulted change in R(T'). Such a strategy simultaneously optimizes the value of the R(T')
and improves the degree sequence in the ladder of majorization. The consideration of R(T)
results in an efficient algorithm that quickly finds a dense spanning tree, which we present
in the next section. Computational results will be provided for both randomly generated
graphs and specific examples from applications. We also comment on improvements of the
final result with the degree sequences taken into account.

3 The edge-swap heuristic

In this section we present an edge-swap heuristic in detail. The following algorithm takes a
graph G = (V, E) as input and returns a dense spanning tree T as output.

Step 1.
Input G(V, E) and generate a random spanning tree T for G. Let SPARSE be “true”.

Step 2.

Step 2-1: Find the candidate edge e to be removed from 7.
For each edge e = wv € E(T), let

dy—1 dy—1

fle) =dudy + Y du, + > dy,
i=1 i=1

where d, and d, are the degrees of the vertices u and v respectively (in T'), d,, for 1 <i <
dy, — 1 (dy, for 1 < j <d, — 1) are the degrees of the other neighbors of u (v) in 7.
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Let e be an edge with the minimum f(.) value.

Step 2-2: Generate the spanning forest 7" =T — e with two components T, and T,.

Step 2-3: Find the candidate edge e” (with end vertices in T, and T, respectively) to be
added to T

For each edge ¢/ = v/v' € E(G) with v’ € T,, and v' € T, let

dy dy
9(€) = (dy + V)(dy + 1)+ Y _dy + Y dy
=1 =1

where d, and d, are the degrees of the vertices u' and v’ respectively (in 7"), d,; for
1<i<dy, (dyg for 1 < j <d,) are the degrees of the neighbors of v’ (v') in T".

Let €” be such an edge with the maximum g(.) value.

Step 2-4: Generate the spanning tree 7" = T" + €”.

Step 2-5: 1f f(e) < g(€”), let SPARSE be “true”. Otherwise let SPARSE be “false”.

Step 3.
While SPARSE is “true”, let T'=T" and repeat Step 2. Return 7" when SPARSE is “false”.

Figure |2l and Figure 3| present a step by step illustration (left — right and top — bottom)
of the algorithm, where the spanning trees in each step is shown in bold face and the removed
edge in each step is shown with a dotted line.

Remark 1. In the above algorithm, the value
g(e") = fle) = R(T") = R(T)

is the mazimum possible improvement in R(.) over one swap. In the case of a tie (i.e.,
multiple edges can serve as e or €”), we simply pick one of them. Since after each swap, the
value of R(T) is strictly increasing, this process terminates after finitely many steps.

4 Computational results

Of course, the heuristic proposed in the previous section does not guarantee the densest
spanning tree as an output. But as experimental results show, this heuristic effectively finds
a dense spanning tree within very few swaps and hence is of great practical interests. When
tested on 100 randomly generated graphs, each of order 15 and containing a spanning star,
the algorithm returns a star in over 60 runs. Part of this data (that is representative of the
general performance) is shown in Table [1]

Note that a star on 15 vertices has total distance 196. This is attainable for all graphs
considered above. As shown in Table [I} all resulting spanning trees are dense (even if it is
not a star) with only one exception, the graph “D”.

In the example shown in Figure |4, 7 edge-swaps resulted in the final spanning tree from
the original graph on 15 vertices and 37 edges.

When applied to the US Airports data set of 332 vertices and 2126 edges [5], only 15
edge-swaps were needed to obtain the final spanning tree. In this case, total distance of the
tree is reduced from 1444880 to 1421327, a reduction of 23553.
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Figure 2: Step by step illustration of the algorithm

Published by Digital Commons@Georgia Southern, 2016



Theory and Applications of Graphs, Vol. 3 [2016], Iss. 1, Art. 1

Figure 3: The original graph (on the left) and the resulted spanning tree (on the right)

Graphs  Number of swaps Initial distance Final distance Returns a star

A 9 386 238 N
B 15 384 196 Y
C 10 404 196 Y
D 0 348 348 N
E 10 432 196 Y
F 10 382 196 Y
G 8 374 232 N
H 13 348 196 Y
I 16 382 196 Y
J 10 382 196 Y
Average: 10.1 382.2 219 -

Table 1: Results of ten randomly generated graphs on 15 vertices

Figure 4: The original graph with first spanning tree (on the left) and the resulted spanning
tree (on the right)
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5 Further improvements

In earlier sections we provided a simple and efficient edge-swap heuristic to find dense span-
ning trees. Computational results are also presented and analyzed. A simple way of improv-
ing the likelihood of achieving denser spanning trees can be obtained by replacing Step 2-5
of the algorithm with the following:

(Step 2-5): If f(e) < g(€”) or f(e) = g(€”) and the degree sequence of 7" is higher in
the majorization ladder than that of T', let SPARSE be “true”. Otherwise let SPARSE be
“false”.

In this case, after each swap, the value of R(T) is strictly increasing or nondecreasing
with the degree sequence moving up in the majorization ladder. Take, for instance, two of
the randomly generated graphs on 15 vertices as discussed in the previous section, Figures
and [6] show improvements in the resulted spanning tree.

Figure 5: The resulted spanning trees from the original algorithm (left) and the modified
algorithm (right)

ke

Figure 6: The resulted spanning trees from the original algorithm (left) and the modified
algorithm (right)

When applying the modified algorithm to the US Airports data set, the improvement
over the original algorithm is shown in Table

For completeness, we also describe the pseudo-code (for the modified algorithm) in Al-
gorithm
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Number of Total Decrease
swaps distance | in distance
Algorithm 15 1421327 23553
Modified 23 1412038 32842
algorithm

Table 2: Comparison of the algorithms with the US Airport data set

Data: G = (V, E)
Result: Updated tree T’
1 Load data set: G < data set;
2 T < MST(G);
3 sparse <— true;
4 while sparse is true do
5 (L_remove, min f(e)) + findRemovalEdges(T);
Select removal edge: e < (u,v);
Tor < T \(u,v);
(neighbors_u, neighbors_v) <« split(T_r, (u,v));
(L_add, max g(e)) < findInsertionEdges(G, T _r,neighbors_u,neighbors_v)
10 Select insertion edge: €” « (u”,v");
11 Ta<+ TruU W, ) ;
12 if min f(e) < max g(e”) then

© 00 N O

13 ‘ T <+ T.a

14 else if min f(e) == max g(e”) then
15 if degree sequence of T'_a majorizes degree sequences of 1" then
16 ‘ T T qa;

17 else

18 ‘ sparse <— false;

19 end

20 else

21 ‘ sparse < false;

22 end

23 end

Algorithm 1: Pseudo-code for the modified edge-swap heuristic

The algorithm starts with loading data set in the format of a n x 3 matrix. The first
two columns represent an edge with two vertices and last column shows weights between
these vertices. A minimum weighted spanning tree T is then generated through the Kruskal
algorithm. Each iteration of edge-swapping includes removing a “bad” edge and adding a
“good” edge which is not in the current tree. Function “find Removal Edges” takes adjacency
matrix of the tree T as an input and returns list of the candidate edges with the minimum
value of f(.). From candidate list, one of the edges, ¢ = (u,v) is chosen to be removed.
After removing the edge from the adjacency matrix of the tree T', we obtain “T"_r” as the

https://digitalcommons.georgiasouthern.edu/tag/vol3/iss1/1
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updated graph. Function “split” is used to split the adjacency matrices of new two subtrees
up and return the lists of vertices in each component. Function “findInsertionEdges” takes
the lists, adjacency matrices of the updated graph and the original graph as inputs. After
calculating ¢g(.) for each candidate edge, it returns minimum ¢(.) and list of corresponding
edges. One of the candidate edges €” = (u”,v”) is chosen to be inserted and the updated
tree “T'"_a” is obtained. If f(e) < g(e”), the new tree is denser than previous and the process
continues. If f(e) = g(e”), the degree sequences of the initial tree and current tree are
calculated. If the degree sequence of the current tree “I"_a” majorizes that of 7' (and the
two degree sequences are not the same), then an edge-swap is made; otherwise process is
terminated.

6 Complexity Analysis

For the original question of finding a spanning tree that maximizes the number of subtrees
or minimizes the total distance, the complexity appears to be difficult to determine. To our
best knowledge, the complexity of this problem is not yet determined. However, given that
“dense” trees usually have large number of leaves and the problem of finding spanning trees
with the most leaves is NP-hard [I], it is natural to guess that finding “dense” spanning trees
is also hard.

On the other hand, the complexity can be easily deduced for our algorithm described in
Section 3. It is easy to see that it takes O(n) time to find an edge to remove in Step 2-1.
The total number of edges in G is at most (g), implying that Step 2-3 takes O(n?) time to
complete. Since each iteration the original algorithm strictly increase the value of R(.) and
the largest possible R(T') on an n-vertex tree is achieved by R(Kj,_1) = (n —1)?, there are
at most O(n?) iterations. Thus the complexity of the original algorithm is O(n*). Note that
this is just worst case analysis. In practice the algorithm usually runs much faster.

As shown in the previous section, the results can be improved by implementing a slightly
different Step 2-5 as shown in the modified algorithm (Algorithm . Note that each degree
sequence of a tree on n vertices is equivalent to (after removing 1 from each degree and
only keeping non-zero entries) a non-increasing sequence of positive integers that sum up to
2n — 2. For example, a degree sequence (5,4,3,3,3,2,1,...,1) of a tree on 16 vertices is
mapped to (4,3,2,2,2,1) with 4 + 3+ 2+ 2+ 2+ 1 = 14. Thus the number of all possible
degree sequences of a spanning tree of a graph on n vertices is the same as the number of
integer partitions of n — 2, which is exponential. This implies that the worst case scenario
of the modified algorithm could have its number of iterations being exponential. However,
as shown in Table [2] for the US Airport data set and experimentation with random graphs,
the modified algorithm generally terminates much faster.
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