7,459 research outputs found

    A Review of Fault Diagnosing Methods in Power Transmission Systems

    Get PDF
    Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field

    Hybrid Signal Processing and Machine Learning Algorithm for Adaptive Fault Classification of Wind Farm Integrated Transmission Line Protection

    Get PDF
    The technological advancement in integration of Renewable Green Energy Sources (RGES) like Wind Farm Generators (WFG), and Photovoltaic (PV) system into conventional power system as a future solution to meet the increase in global energy demands in order to reduce the cost of power generation, and improve on the climate change impact. This innovation also introduces challenges in the power system protection by it being compromised due to injected fault current infeeds on existing facilities. These infeed lead to the undesired trip of a healthy section of the line, and protection system failure. This paper presents a soft computational approach to adaptive fault classification model on High Voltage Transmission Line (HVTL) with and without RGES-WFG integration topologies, using extracted one-cycle fault signature of voltage and current signals with wavelet statistical approach in Matlab. The results are unique signatures across all fault types and fault distances with distinct entropy energy values on proposed network architecture. The supervised machine learning algorithm from Bayesian network classified 99.15 % faults correctly with the operation time of 0.01 s to produced best-generalized model with an RMS error value of 0.05 for single line-to-ground (SLG) fault identification and classification. Best suitable for adaptive unit protection scheme integration

    Mamdani Fuzzy Expert System Based Directional Relaying Approach for Six-Phase Transmission Line

    Get PDF
    Traditional directional relaying methods for 6-phase transmission lines have complex effort, and so there is still a need for novel direction relaying estimation scheme. This study presents a Mamdani-fuzzy expert system (MFES) approach for discriminating faulty section/zone, classifying faults and locating faults in 6-phase transmission lines. The 6-phase fundamental component of currents, voltages and phase angles are captured at single bus and are used in the protection scheme. Simulation results substantiate that the protection scheme is very successful against many parameters such as different fault types, fault resistances, transmission line fault locations and inception angles. A large number of fault case studies have been carried out to evaluate reach setting and % error of proposed method. It provides primary protection to transmission line length and also offers backup protection for a reverse section of transmission line. The experimental results show that the scheme performs better than the other schemes

    Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review

    Get PDF
    The protection of AC microgrids (MGs) is an issue of paramount importance to ensure their reliable and safe operation. Designing reliable protection mechanism, however, is not a trivial task, as many practical issues need to be considered. The operation mode of MGs, which can be grid-connected or islanded, employed control strategy and practical limitations of the power electronic converters that are utilized to interface renewable energy sources and the grid, are some of the practical constraints that make fault detection, classification, and coordination in MGs different from legacy grid protection. This article aims to present the state-of-the-art of the latest research and developments, including the challenges and issues in the field of AC MG protection. A broad overview of the available fault detection, fault classification, and fault location techniques for AC MG protection and coordination are presented. Moreover, the available methods are classified, and their advantages and disadvantages are discussed

    Fault Detection and Classification in Transmission Line Using Wavelet Transform and ANN

    Full text link
    Recent years, there is an increased interest in fault classification algorithms. The reason, behind this interest is the escalating power demand and multiple interconnections of utilities in grid. This paper presents an application of wavelet transforms to detect the faults and further to perform classification by supervised learning paradigm. Different architectures of ANN aretested with the statistical attributes of a wavelet transform of a voltage signal as input features and binary digits as outputs. The proposed supervised learning module is tested on a transmission network. It is observed that ANN architecture performs satisfactorily when it is compared with the simulation results. The transmission network is simulated on Matlab. The performance indices Mean Square Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Sum Square Error (SSE) are used to determine the efficacy of the neural network

    Fault Detection and Classification in Transmission Line Using Wavelet Transform and ANN

    Get PDF
    Recent years, there is an increased interest in fault classification algorithms. The reason, behind this interest is the escalating power demand and multiple interconnections of utilities in grid. This paper presents an application of wavelet transforms to detect the faults and further to perform classification by supervised learning paradigm. Different architectures of ANN aretested with the statistical attributes of a wavelet transform of a voltage signal as input features and binary digits as outputs. The proposed supervised learning module is tested on a transmission network. It is observed that ANN architecture performs satisfactorily when it is compared with the simulation results. The transmission network is simulated on Matlab. The performance indices Mean Square Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Sum Square Error (SSE) are used to determine the efficacy of the neural network

    A New Approach to Power System Protection using Time-frequency Analysis and Pattern Recognition

    Get PDF
    The fault diagnosis of Electric Power System is a process of discriminating the faulted system elements by protective relays and subsequent tripping by circuit breakers. Specially, as soon as some serious faults occur on a power system, a lot of alarm information is transmitted to the control center. Under such situation, the operators are required to judge the cause, location, and the system elements with faults rapidly and accurately. Thus, good fault diagnosis methods can provide accurate and effective diagnostic information to dispatch operators and help them take necessary measures in fault situation so as to guarantee the secure and stable operation of the Electric power system. This thesis reports various techniques used for detection, classification and localization of faults on the high voltage transmission line. The distance protection scheme for transmission line is employed for various power networks such as single-circuit line, double-circuit line, and lines having FACTS ..

    Fuzzy Inference System Approach for Locating Series, Shunt, and Simultaneous Series-Shunt Faults in Double Circuit Transmission Lines

    Get PDF
    Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance
    corecore