51,226 research outputs found

    Dynamic Distance Measures on Spaces of Isospectral Mixed Quantum States

    Full text link
    Distance measures are indispensable tools in quantum information processing and quantum computing. This since they can be used to quantify to what extent information is preserved, or altered, by quantum processes. In this paper we propose a new distance measure for mixed quantum states, that we call the dynamic distance measure, and show that it is a proper distance measure. The dynamic distance measure is defined in terms of a measurable quantity, which make it very suitable for applications. In a final section we compare the dynamical distance measure with the well-known Bures distance.Comment: 8 pages, no figure

    Different distance measures for fuzzy linear regression with Monte Carlo methods

    Get PDF
    The aim of this study was to determine the best distance measure for estimating the fuzzy linear regression model parameters with Monte Carlo (MC) methods. It is pointed out that only one distance measure is used for fuzzy linear regression with MC methods within the literature. Therefore, three different definitions of distance measure between two fuzzy numbers are introduced. Estimation accuracies of existing and proposed distance measures are explored with the simulation study. Distance measures are compared to each other in terms of estimation accuracy; hence this study demonstrates that the best distance measures to estimate fuzzy linear regression model parameters with MC methods are the distance measures defined by Kaufmann and Gupta (Introduction to fuzzy arithmetic theory and applications. Van Nostrand Reinhold, New York, 1991), Heilpern-2 (Fuzzy Sets Syst 91(2):259–268, 1997) and Chen and Hsieh (Aust J Intell Inf Process Syst 6(4):217–229, 2000). One the other hand, the worst distance measure is the distance measure used by Abdalla and Buckley (Soft Comput 11:991–996, 2007; Soft Comput 12:463–468, 2008). These results would be useful to enrich the studies that have already focused on fuzzy linear regression models

    Linking a distance measure of entanglement to its convex roof

    Full text link
    An important problem in quantum information theory is the quantification of entanglement in multipartite mixed quantum states. In this work, a connection between the geometric measure of entanglement and a distance measure of entanglement is established. We present a new expression for the geometric measure of entanglement in terms of the maximal fidelity with a separable state. A direct application of this result provides a closed expression for the Bures measure of entanglement of two qubits. We also prove that the number of elements in an optimal decomposition w.r.t. the geometric measure of entanglement is bounded from above by the Caratheodory bound, and we find necessary conditions for the structure of an optimal decomposition.Comment: 11 pages, 4 figure

    Generalized trace distance measure connecting quantum and classical non-Markovianity

    Get PDF
    We establish a direct connection of quantum Markovianity of an open quantum system to its classical counterpart by generalizing the criterion based on the information flow. Here, the flow is characterized by the time evolution of Helstrom matrices, given by the weighted difference of statistical operators, under the action of the quantum dynamical evolution. It turns out that the introduced criterion is equivalent to P-divisibility of a quantum process, namely divisibility in terms of positive maps, which provides a direct connection to classical Markovian stochastic processes. Moreover, it is shown that similar mathematical representations as those found for the original trace distance based measure hold true for the associated, generalized measure for quantum non-Markovianity. That is, we prove orthogonality of optimal states showing a maximal information backflow and establish a local and universal representation of the measure. We illustrate some properties of the generalized criterion by means of examples.Comment: 11 pages, 3 figure

    Boosting Nearest Neighbor Classifiers for Multiclass Recognition

    Full text link
    This paper introduces an algorithm that uses boosting to learn a distance measure for multiclass k-nearest neighbor classification. Given a family of distance measures as input, AdaBoost is used to learn a weighted distance measure, that is a linear combination of the input measures. The proposed method can be seen both as a novel way to learn a distance measure from data, and as a novel way to apply boosting to multiclass recognition problems, that does not require output codes. In our approach, multiclass recognition of objects is reduced into a single binary recognition task, defined on triples of objects. Preliminary experiments with eight UCI datasets yield no clear winner among our method, boosting using output codes, and k-nn classification using an unoptimized distance measure. Our algorithm did achieve lower error rates in some of the datasets, which indicates that, in some domains, it may lead to better results than existing methods

    Retinal metric: a stimulus distance measure derived from population neural responses

    Full text link
    The ability of the organism to distinguish between various stimuli is limited by the structure and noise in the population code of its sensory neurons. Here we infer a distance measure on the stimulus space directly from the recorded activity of 100 neurons in the salamander retina. In contrast to previously used measures of stimulus similarity, this "neural metric" tells us how distinguishable a pair of stimulus clips is to the retina, given the noise in the neural population response. We show that the retinal distance strongly deviates from Euclidean, or any static metric, yet has a simple structure: we identify the stimulus features that the neural population is jointly sensitive to, and show the SVM-like kernel function relating the stimulus and neural response spaces. We show that the non-Euclidean nature of the retinal distance has important consequences for neural decoding.Comment: 5 pages, 4 figures, to appear in Phys Rev Let
    • …
    corecore