10 research outputs found

    Exponential Domination in Subcubic Graphs

    Full text link
    As a natural variant of domination in graphs, Dankelmann et al. [Domination with exponential decay, Discrete Math. 309 (2009) 5877-5883] introduce exponential domination, where vertices are considered to have some dominating power that decreases exponentially with the distance, and the dominated vertices have to accumulate a sufficient amount of this power emanating from the dominating vertices. More precisely, if SS is a set of vertices of a graph GG, then SS is an exponential dominating set of GG if vS(12)dist(G,S)(u,v)11\sum\limits_{v\in S}\left(\frac{1}{2}\right)^{{\rm dist}_{(G,S)}(u,v)-1}\geq 1 for every vertex uu in V(G)SV(G)\setminus S, where dist(G,S)(u,v){\rm dist}_{(G,S)}(u,v) is the distance between uV(G)Su\in V(G)\setminus S and vSv\in S in the graph G(S{v})G-(S\setminus \{ v\}). The exponential domination number γe(G)\gamma_e(G) of GG is the minimum order of an exponential dominating set of GG. In the present paper we study exponential domination in subcubic graphs. Our results are as follows: If GG is a connected subcubic graph of order n(G)n(G), then n(G)6log2(n(G)+2)+4γe(G)13(n(G)+2).\frac{n(G)}{6\log_2(n(G)+2)+4}\leq \gamma_e(G)\leq \frac{1}{3}(n(G)+2). For every ϵ>0\epsilon>0, there is some gg such that γe(G)ϵn(G)\gamma_e(G)\leq \epsilon n(G) for every cubic graph GG of girth at least gg. For every 0<α<23ln(2)0<\alpha<\frac{2}{3\ln(2)}, there are infinitely many cubic graphs GG with γe(G)3n(G)ln(n(G))α\gamma_e(G)\leq \frac{3n(G)}{\ln(n(G))^{\alpha}}. If TT is a subcubic tree, then γe(T)16(n(T)+2).\gamma_e(T)\geq \frac{1}{6}(n(T)+2). For a given subcubic tree, γe(T)\gamma_e(T) can be determined in polynomial time. The minimum exponential dominating set problem is APX-hard for subcubic graphs

    Lower Bounds on the Distance Domination Number of a Graph

    Get PDF
    For an integer k1k \ge 1, a (distance) kk-dominating set of a connected graph GG is a set SS of vertices of GG such that every vertex of V(G)SV(G) \setminus S is at distance at most~kk from some vertex of SS. The kk-domination number, γk(G)\gamma_k(G), of GG is the minimum cardinality of a kk-dominating set of GG. In this paper, we establish lower bounds on the kk-domination number of a graph in terms of its diameter, radius, and girth. We prove that for connected graphs GG and HH, γk(G×H)γk(G)+γk(H)1\gamma_k(G \times H) \ge \gamma_k(G) + \gamma_k(H) -1, where G×HG \times H denotes the direct product of GG and HH

    Domination on hyperbolic graphs

    Get PDF
    If k ≥ 1 and G = (V, E) is a finite connected graph, S ⊆ V is said a distance k-dominating set if every vertex v ∈ V is within distance k from some vertex of S. The distance k-domination number γ kw (G) is the minimum cardinality among all distance k-dominating sets of G. A set S ⊆ V is a total dominating set if every vertex v ∈ V satisfies δS (v) ≥ 1 and the total domination number, denoted by γt(G), is the minimum cardinality among all total dominating sets of G. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of any geodesic metric space is equivalent to the hyperbolicity of a graph related to it. In this paper we obtain relationships between the hyperbolicity constant δ(G) and some domination parameters of a graph G. The results in this work are inequalities, such as γkw(G) ≥ 2δ(G)/(2k + 1) and δ(G) ≤ γt(G)/2 + 3.Supported by two grants from Ministerio de Economía y Competitividad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (MTM2016-78227-C2-1-P and MTM2017-90584-REDT), Spain, and a grant from Agencia Estatal de Investigación (PID2019-106433GB-I00 / AEI / 10.13039/501100011033), Spain

    Distance domination and distance irredundance in graphs

    No full text
    A set D ⊆ V of vertices is said to be a (connected) distance k-dominating set of G if the distance between each vertex u ∈ V − D and D is at most k (and D induces a connected graph in G). The minimum cardinality of a (connected) distance k-dominating set in G is the (connected) distance k-domination number of G, denoted by γk(G) (γc k (G), respectively). The set D is defined to be a total k-dominating set of G if every vertex in V is within distance k from some vertex of D other than itself. The minimum cardinality among all total k-dominating sets of G is called the total k-domination number of G and is denoted by γ t k (G). For x ∈ X ⊆ V, if N k [x] − N k [X − x] � = ∅, the vertex x is said to be k-irredundant in X. A set X containing only k-irredundant vertices is called k-irredundant. The k-irredundance number of G, denoted by irk(G), is the minimum cardinality taken over all maximal k-irredundant sets of vertices of G. In this paper we establish lower bounds for the distance k-irredundance number of graphs and trees. More precisely, we prove that 5k+1 (G) + 2k for each connected graph G and 2 irk(G) ≥ γc k (2k + 1)irk(T) ≥ γc k (T) + 2k ≥ |V | + 2k − kn1(T) for each tree T = (V, E) with n1(T) leaves. A class of examples shows that the latter bound is sharp. The second inequality generalizes a result of Meierling and Volkmann [9] and Cyman, Lemańska and Raczek [2] regarding γk and the first generalizes a result of Favaron and Kratsch [4] regarding ir1. Furthermore, we shall show that γc 3k+1 k (G) ≤ 2 γt k (G) − 2k for each connected graph G, thereby generalizing a result of Favaron and Kratsch [4] regarding k = 1
    corecore