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LOWER BOUNDS ON THE DISTANCE DOMINATION

NUMBER OF A GRAPH

RANDY DAVILA, CALEB FAST, MICHAEL A. HENNING,
AND FRANKLIN KENTER

Abstract. For an integer k ≥ 1, a (distance) k-dominating set of a
connected graph G is a set S of vertices of G such that every vertex
of V (G) \ S is at distance at most k from some vertex of S. The k-
domination number, γk(G), of G is the minimum cardinality of a k-
dominating set of G. In this paper, we establish lower bounds on the
k-domination number of a graph in terms of its diameter, radius, and
girth. We prove that for connected graphs G and H, γk(G × H) ≥
γk(G) + γk(H) − 1, where G ×H denotes the direct product of G and
H.

1. Introduction

Distance in graphs is a fundamental concept in graph theory. Let G be a
connected graph. The distance between two vertices u and v in G, denoted
dG(u, v), is the length (i.e., the number of edges) of a shortest (u, v)-path
in G. The eccentricity eccG(v) of v in G is the distance between v and a
vertex farthest from v in G. The minimum eccentricity among all vertices
of G is the radius of G, denoted by rad(G), while the maximum eccentricity
among all vertices of G is the diameter of G, denoted by diam(G). Thus,
the diameter of G is the maximum distance among all pairs of vertices of
G. A vertex v with eccG(v) = diam(G) is called a peripheral vertex of G.
A diametral path in G is a shortest path in G whose length is equal to the
diameter of the graph. Thus, a diametral path is a path of length diam(G)
joining two peripheral vertices of G. If S is a set of vertices in G, then the
distance, dG(v, S), from a vertex v to the set S is the minimum distance
from v to a vertex of S; that is, dG(v, S) = min{dG(u, v) | u ∈ S}. In
particular, if v ∈ S, then d(v, S) = 0.

The concept of domination in graphs is also very well studied in graph
theory. A dominating set in a graph G is a set S of vertices of G such
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that every vertex in V (G) \ S is adjacent to at least one vertex in S. The
domination number of G, denoted by γ(G), is the minimum cardinality of a
dominating set of G. The literature on the subject of domination parameters
in graphs, up to the year 1997, has been surveyed and detailed in the two
books [8, 7].

In this paper we continue the study of distance domination in graphs,
which combines the concepts of both distance and domination in graphs.
Let k ≥ 1 be an integer and let G be a graph. In 1975, Meir and Moon [15]
introduced the concept of a distance k-dominating set (called a “k-covering”
in [15]) in a graph. A set S is a k-dominating set of G if every vertex is within
distance k from some vertex of S; that is, for every vertex v of G, we have
d(v, S) ≤ k. The k-domination number of G, denoted γk(G), is the minimum
cardinality of a k-dominating set of G. When k = 1, the 1-domination
number of G is precisely the domination number of G, that is, γ1(G) = γ(G).
The literature on the subject of distance domination in graphs, up to the
year 1997, can be found in the book [9]. Distance domination is now widely
studied; see, for example, [1, 4, 6, 10, 11, 14, 15, 17, 18, 19].

Definitions and Notation. For notation and graph theory terminology,
we in general follow [12]. Specifically, let G be a graph with vertex set V (G)
of order n(G) = |V (G)| and edge set E(G) of size m(G) = |E(G)|. We
assume throughout the paper that all graphs considered are simple graphs,
i.e., finite graphs without multiple edges and no directed edges or loops. A
non-trivial graph is a graph on at least two vertices. A neighbor of a vertex v
in G is a vertex adjacent to v. The open neighborhood of v, denoted NG(v),
is the set of all neighbors of v in G, while the closed neighborhood of v is the
set NG[v] = NG(v) ∪ {v}. The closed k-neighborhood, denoted Nk[v], of v is
defined in [4] as the set of all vertices within distance k from v in G; that
is, Nk[v] = {u | d(u, v) ≤ k}. When k = 1, Nk[v] = N [v].

The degree of a vertex v in G, denoted dG(v), is the number of neighbors,
|NG(v)|, of v in G. The minimum and maximum degree among all the
vertices of G are denoted by δ = δ(G) and ∆ = ∆(G), respectively. The
subgraph induced by a set S of vertices of G is denoted by G[S]. The girth
of G, denoted g = g(G), is the length of a shortest cycle in G. For sets of
vertices X and Y of G, the set X k-dominates the set Y if every vertex of Y
is within distance k from some vertex of X. In particular, if X k-dominates
the set V (G), then X is a k-dominating set of G.

If the graph G is clear from context, we simply write V , E, d(v), ecc(v),
N(v), and N [v] rather than V (G), E(G), dG(v), eccG(v), NG(v), and NG[v],
respectively. We use the standard notation [n] = {1, 2, . . . , n}.

Known Results. The k-domination number of G is in the class of NP -hard
graph invariants to compute [7]. Because of the computational complexity
of computing γk(G), graph theorists have sought upper and lower bounds
on γk(G) in terms of simple graph parameters like order, size, and degree.
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Since every k-dominating set of a spanning subgraph of a graph G is a
k-dominating set of G, we recall the following observation:

Proposition 1.1 ([20]). For k ≥ 1, if H is a spanning subgraph of a graph
G, then γk(G) ≤ γk(H).

In 1975, Meir and Moon [15] established an upper bound for the k-
domination number of a tree in terms of its order. They proved that for
k ≥ 1, if T is a tree of order n ≥ k + 1, then γk(T ) ≤ n/(k + 1). As a
consequence of this result and Proposition 1.1, if G is a connected graph of
order n ≥ k + 1, then γk(G) ≤ n/(k + 1). A short proof of the Meir-Moon
upper bound can be found in [11]; see also Proposition 24 and Corollary 12.5
in the book [9].

A complete characterization of the graphs G achieving equality in this
upper bound was obtained by Topp and Volkmann [19]. Tian and Xu [18]
improved the Meir-Moon upper bound and showed that for k ≥ 1, if G
is a connected graph of order n ≥ k + 1 with maximum degree ∆, then
γk(G) ≤ (n−∆ + k − 1)/k. The Tian-Xu bound was further improved
by Henning and Lichiardopol [10], who showed that for k ≥ 2, if G is a
connected graph with minimum degree δ ≥ 2 and maximum degree ∆ of
order n ≥ ∆ + k − 1, then

γk(G) ≤ n+ δ −∆

δ + k − 1
.

We recall the following well-known lower bound on the domination num-
ber of a graph in terms of its diameter.

Theorem 1.2 ([8]). If G is a connected graph with diameter d, then γ(G) ≥
(d+ 1)/3.

The following two results were originally conjectured by the conjecture
making program Graffiti.pc; see [2] for details.

Theorem 1.3 ([3]). If G is a connected graph with radius r, then γ(G) ≥
(2r)/3.

Theorem 1.4 ([3]). If G is a connected graph with girth g ≥ 3, then γ(G) ≥
g/3.

Our Results. In this paper, we establish lower bounds for the k-domination
number of a graph in terms of its diameter (Theorem 3.1), radius (Corol-
lary 3.5), and girth (Theorem 3.6). These results generalize the results of
Theorem 1.2, 1.3, and 1.4. A key tool in order to prove our results is the im-
portant lemma (Lemma 2.1) that every connected graph has a spanning tree
with equal k-domination number. We also prove a key property (Lemma 2.2)
of shortest cycles in a graph that enables us to establish our girth result for
the k-domination number of a graph. We also show that our bounds are all
sharp and provide examples following the proofs.
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2. Preliminary Lemmas

We shall need the following two lemmas.

Lemma 2.1. For k ≥ 1, every connected graph G has a spanning tree T
such that γk(T ) = γk(G).

Proof. Let S be a minimum k-dominating set of G and note that |S| =
γk(G). For i ∈ [k], let Di(S) = {v ∈ V (G) \ S | dG(v, S) = i}. Since S is a
k-dominating set of G, every vertex v in G is within distance k from some
vertex of S and therefore belongs to Di(S) for some i ∈ [k]. Furthermore,
such a vertex is adjacent to at least one vertex of Di−1(S), and possibly to
vertices in Di(S) and Di+1(S). For all i ∈ [k] and for each vertex v ∈ Di(S),
we delete all but one edge that joins v to a vertex of Di−1(S). Further, we
delete all edges, if any, that join v to vertices in Di(S). Let F denote the
resulting spanning subgraph of the graph G.

We claim that F is a forest. Suppose, to the contrary, that F contains a
cycle C. Let v be a vertex in such a cycle C at maximum distance from a
vertex of S in G, and let v1 and v2 be the two neighbors of v on C. Suppose
that v ∈ Dp(S) for some p ∈ [k]. Then dG(v, S) = p and dG(w, S) ≤ p
for every vertex w of C different from v. If v1 or v2 belongs to Dp(S), this
contradicts the way in which F was constructed, noting that no edge in F
joins two vertices in the same set Di(S). Thus, both v1 and v2 belong to
Dp−1(S). Once again, this contradicts the way in which F was constructed,
noting that exactly one edge in F joins a vertex in Di(S) to a vertex in
Di−1(S). Therefore, F is a forest.

If F is a tree, then we let T = F ; otherwise, if the forest F has ` ≥ 2
components, then we let T be obtained from F by adding to it `− 1 edges
in such a way that the resulting subgraph is connected. We note that T
is a tree. By construction, if v ∈ Di(S) for some i ∈ [k], then there is a
path from v to S of length i in T , and so dT (v, S) ≤ dG(v, S). Since T
is a spanning tree of G, dG(v, S) ≤ dT (v, S) for every vertex v ∈ V (G).
Consequently, the spanning tree T of G is distance-preserving from the set
S in the sense that dG(v, S) = dT (v, S) for every vertex v ∈ V (G). Since S
is a k-dominating set of G, the set S is therefore a k-dominating set of T ,
and so γk(T ) ≤ |S| = γk(G). However, by Observation 1.1, γk(G) ≤ γk(T ).
Consequently, γk(T ) = γk(G). �

Lemma 2.2. Let G be a connected graph that contains a cycle, and let C
be a shortest cycle in G. If v is a vertex of G outside C that k-dominates
at least 2k vertices of C, then there exist two vertices u,w ∈ V (C) that are
both k-dominated by v such that a shortest (u, v)-path does not contain w,
and a shortest (v, w)-path does not contain u.

Proof. Since v is not on C, it has a distance of at least 1 to every vertex of
C. Let u be a vertex of C at minimum distance from v in G and let Q be
the set of vertices on C that are k-dominated by v in G. Thus Q ⊆ V (C)
and, by assumption, |Q| ≥ 2k. Among all vertices in Q, let w ∈ Q be chosen
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to have maximum distance from u on the cycle C. Since there are 2k − 1
vertices within distance k − 1 from u on C, the vertex w has distance at
least k from u on the cycle C. Let Pu be a shortest (u, v)-path and let Pw

be a shortest (v, w)-path in G. If w ∈ V (Pu), then dG(v, w) < dG(v, u),
contradicting our choice of the vertex u. Therefore, w /∈ V (Pu).

Suppose that u ∈ V (Pw). Since C is a shortest cycle in G, the distance
between u and w on C is the same as the distance between u and w in G.
Thus, dG(u,w) = dC(u,w), implying that dG(v, w) = dG(v, u) + dG(u,w) ≥
1 + dG(u,w) = 1 + dC(u,w) ≥ 1 + k, a contradiction. Therefore, u /∈
V (Pw). �

3. Lower Bounds

In this section we provide various lower bounds on the k-domination num-
ber for general graphs. We first prove a generalization of Theorem 1.2 by
establishing a lower bound on the k-domination number of a graph in terms
of its diameter.

Theorem 3.1. For k ≥ 1, if G is a connected graph with diameter d then

γk(G) ≥ d+ 1

2k + 1
.

Proof. Let P : u0u1 . . . ud be a diametral path in G, joining two peripheral
vertices u = u0 and v = ud of G. Then P has length diam(G) = d. We will
show that every vertex of G k-dominates at most 2k + 1 vertices of P .

Suppose, to the contrary, that there exists a vertex q ∈ V (G) that k-
dominates at least 2k+2 vertices of P ; note that it is possible that q ∈ V (P ).
Let Q be the set of vertices on the path P that are k-dominated by the
vertex q in G. By supposition, |Q| ≥ 2k + 2. Let i and j be the smallest
and largest integers, respectively, such that ui ∈ Q and uj ∈ Q. We note
that Q ⊆ {ui, ui+1, . . . , uj}. Thus, 2k + 2 ≤ |Q| ≤ j − i + 1. Since P is a
shortest (u, v)-path in G, we therefore note that dG(ui, uj) = dP (ui, uj) =
j − i ≥ 2k + 1.

Let Pi be a shortest (ui, q)-path in G and let Pj be a shortest (q, vi)-path
in G. Since the vertex q k-dominates both ui and uj in G, both paths Pi and
Pj have length at most k. Therefore, the (ui, uj)-path obtained by following
the path Pi from ui to q, and then proceeding along the path Pj from q to
uj , has length at most 2k, implying that dG(ui, uj) ≤ 2k, a contradiction.
Therefore, every vertex of G k-dominates at most 2k + 1 vertices of P .

Now let S be a minimum k-dominating set of G so that |S| = γk(G). Each
vertex of S k-dominates at most 2k+ 1 vertices of P , and so S k-dominates
at most |S|(2k + 1) vertices of P . However, since S is a k-dominating set
of G, every vertex of P is k-dominated the set S, and so S k-dominates
|V (P )| = d+1 vertices of P . Therefore, |S|(2k+1) ≥ d+1, or, equivalently,
γk(G) ≥ (d+ 1)/(2k + 1). �
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That the lower bound of Theorem 3.1 is tight may be seen by taking G to
be a path, v1v2 . . . vn, of order n = `(2k+1) for some ` ≥ 1. Let d = diam(G),
so d = n−1 = `(2k+ 1)−1. By Theorem 3.1, γk(G) ≥ (d+ 1)/(2k+ 1) = `.
The set

S =

`−1⋃
i=0

{vk+1+i(2k+1)}

is a k-dominating set of G, and so γk(G) ≤ |S| = `. Consequently, γk(G) =
` = (d+ 1)/(2k + 1). We state this formally as follows.

Proposition 3.2. If G = Pn where n ≡ 0 mod (2k + 1), then

γk(G) =
diam(G) + 1

2k + 1
.

More generally, by applying Theorem 3.1, the k-domination number of a
path Pn on n ≥ 3 vertices is easy to compute.

Proposition 3.3. For k ≥ 1 and n ≥ 3,

γk(Pn) =

⌈
n

2k + 1

⌉
.

For k ≥ 1 and n ≥ 3, every vertex of a cycle Cn k-dominates exactly 2k+1
vertices. Thus, if S is a minimum k-dominating set of G, then the set S
k-dominates at most |S|(2k+1) vertices of P , implying that |S|(2k+1) ≥ n,
or, equivalently, γk(Cn) = |S| ≥ n/(2k + 1). Conversely, by Proposition 1.1
and Proposition 3.3, γk(Cn) ≤ γk(Pn) = dn/(2k + 1)e. Consequently, we
have the following result.

Proposition 3.4. For k ≥ 1 and n ≥ 3,

γk(Cn) =

⌈
n

2k + 1

⌉
.

For k ≥ 1 and n ≥ 3, where n ≡ 0 mod (2k + 1), consider a path
P : v1v2 . . . vn. By replacing each vertex vi, for 2 ≤ i ≤ n − 1, on the
path P with a clique Vi of size at least δ ≥ 1, adding all edges between v1
and vertices in V2, adding all edges between vn and vertices in Vn−1, and
adding all edges between vertices in Vi and Vi+1 for 2 ≤ i ≤ n − 2, we ob-
tain a graph with minimum degree at least δ achieving the lower bound of
Theorem 3.1.

From Theorem 3.1, we have the following lower bound on the
k-domination number of a graph in terms of its radius. We remark that
when k = 1, Corollary 3.5 is precisely Theorem 1.3. Therefore, Corollary
3.5 is a generalization of Theorem 1.3.

Corollary 3.5. For k ≥ 1, if G is a connected graph with radius r, then

γk(G) ≥ 2r

2k + 1
.
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Proof. By Lemma 2.1, the graph G has a spanning tree T such that γk(T ) =
γk(G). Since adding edges to a graph cannot increase its radius, rad(G) ≤
rad(T ). Since T is a tree, we note that diam(T ) ≥ 2rad(T ) − 1. Applying
Theorem 3.1 to the tree T , we have that

γk(G) = γk(T ) ≥ diam(T ) + 1

2k + 1
≥ 2rad(T )

2k + 1
≥ 2rad(G)

2k + 1
.

�

That the lower bound of Corollary 3.5 is tight may be seen by taking
G to be a path, Pn, of order n = 2`(2k + 1) for some integer ` ≥ 1.
Let d = diam(G) and let r = rad(G) so that d = 2`(2k + 1) − 1 and
r = `(2k + 1). In particular, we note that d = 2r − 1. By Proposition 3.3,
γk(G) = (d+ 1)/(2k + 1) = (2r)/(2k + 1). As before, by replacing each in-
ternal vertex on the path with a clique of size at least δ ≥ 1, we can obtain
a graph with minimum degree at least δ achieving the lower bound of Corol-
lary 3.5.

We next prove a generalization of Theorem 1.4 by establishing a lower
bound on the k-domination number of a graph in terms of its girth. We
remark that when k = 1, Theorem 3.6 is precisely Theorem 1.4.

Theorem 3.6. For k ≥ 1, if G is a connected graph with girth g <∞, then

γk(G) ≥ g

2k + 1
.

Proof. The lower bound is trivial if g ≤ 2k + 1. We may therefore assume
that g ≥ 2k+ 2. Let C be a shortest cycle in G, so that C has length g. We
note that the distance between two vertices in V (C) is exactly the same in
C as in G. We consider two cases, depending on the value of the girth.

Case 1: 2k + 2 ≤ g ≤ 4k + 2:
In this case, we need to show that γk(G) ≥ dg/(2k + 1)e = 2. Suppose, to
the contrary, that γk(G) = 1. Then, G contains a vertex v that is within
distance k from every vertex of G. In particular, d(u, v) ≤ k for every vertex
u ∈ V (C). If v ∈ V (C), then since C is a shortest cycle in G, we note that
dC(u, v) = dG(u, v) ≤ k for every vertex u ∈ V (C). However, the lower
bound condition on the girth, namely g ≥ 2k + 2, implies that no vertex
on the cycle C is within distance k in C from every vertex of C, which is a
contradiction. Therefore, v /∈ V (C).

By Lemma 2.2, there exists two vertices u,w ∈ V (C) such that a shortest
(v, u)-path does not contain w and a shortest (v, w)-path does not contain
u. We will show that we can choose u and w to be adjacent vertices on C.

Let w be a vertex of C at maximum distance, say dw, from v in G. Let w1

and w2 be the two neighbors of w on the cycle C. If dG(v, w1) = dw, then
we can take u = w1, and the desired property (that a shortest (v, u)-path
does not contain w and a shortest (v, w)-path does not contain u) holds.
Hence, we may assume that dG(v, w1) 6= dw. By our choice of the vertex w,
we note that dG(v, w1) ≤ dw, implying that dG(v, w1) = dw − 1. Similarly,
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we may assume that dG(v, w2) = dw − 1. Let Pw be a shortest (v, w)-path.
At most one of w1 and w2 belong to the path Pw. After renaming w1 and
w2, if necessary, we may assume that w1 does not belong to the path Pw.
In this case, letting u = w1 and letting Pu be a shortest (v, u)-path, we note
that w /∈ V (Pu). Since we have already observed that u /∈ V (Pw), this shows
that u and w can indeed be chosen to be neighbors on C.

Let x be the last vertex in common with the (v, u)-path, Pu, and the
(v, w)-path, Pw; note that it is possible that x = v. Then the cycle obtained
from the (x, u)-section of Pu by proceeding along the edge uw to w, and then
following the (w, x)-section of Pw back to x, has length at most dG(v, u)+1+
dG(v, w) ≤ 2k+ 1, contradicting the fact that the girth satisfies g ≥ 2k+ 2.
Therefore, γk(G) ≥ 2, as desired.

Case 2: g ≥ 4k + 3:
Let S be a minimum k-dominating set of G so that |S| = γk(G). Let
K = S ∩ V (C) and let L = S \ V (C). Then S = K ∪ L. If L = ∅, then
S = K and the set K is a k-dominating set of C; by Proposition 3.4 it
follows that

γk(G) = |S| = |K| ≥ γk(Cg) =

⌈
g

2k + 1

⌉
,

and the theorem holds. Hence we may assume that |L| ≥ 1, for otherwise the
desired result holds. We wish to show that |K|+ |L| = |S| ≥ dg/(2k + 1)e.
Suppose, to the contrary, that

|K| ≤
⌈

g

1 + 2k

⌉
− 1− |L|.

As observed earlier, the distance between two vertices in V (C) is exactly
the same in C as in G. This implies that each vertex of K, since K ⊆ V (C),
is within distance k from exactly 2k + 1 vertices of C. Thus, the set K
k-dominates at most

|K|(2k + 1) ≤
(⌈

g

2k + 1
− 1− |L|

⌉)
(2k + 1)

≤
(
g + 2k

2k + 1
− 1− |L|

)
(2k + 1)

= g − 1− |L|(2k + 1)

vertices from C. Consequently, since |V (C)| = g, there are at least |L|(2k+
1)+1 vertices of C which are not k-dominated by vertices of K, and therefore
must be k-dominated by vertices from L. Thus, by the Pigeonhole Principle,
there is at least one vertex, call it v, in L that k-dominates at least 2k + 2
vertices in C. By Lemma 2.2, there exist two vertices u,w ∈ V (C) that
are both k-dominated by v and such that a shortest (u, v)-path, Pu, from
u to v, does not contain w and a shortest (w, v)-path, Pw, from w to v,
does not contain u. Analogously as in the proof of Lemma 2.2, we can
choose the vertex u to be a vertex of C at minimum distance from v in G.
Thus, the vertex u is the only vertex on the cycle C that belongs to the
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path Pu. Combining the paths Pu and Pw produces a (u,w)-walk of length
at most dG(u, v) + dG(v, w) ≤ 2k, implying that dG(u,w) ≤ 2k. Since C is
a shortest cycle in G, we therefore have that dC(u,w) = dG(u,w) ≤ 2k.

The cycle C yields two (w, u)-paths. Let Pwu be the (w, u)-path on the
cycle C of shorter length (starting at w and ending at u). Thus, Pwu has
length dC(u,w) ≤ 2k. Note that the path Pwu belongs entirely on the cycle
C. Let x ∈ V (C) be the last vertex in common with the (w, v)-path, Pw,
and the (w, u)-path, Pwu; note that it is possible that x = w. However,
observe that x 6= u, since u /∈ V (Pw). Let y be the first vertex in common
with the (x, v)-subsection of the path Pw and with the (u, v)-path Pu; note
that it is possible that y = v. However, observe that y 6= x since x /∈ V (Pu)
and V (Pu) ∩ V (C) = {u}. Using the (x, u)-subsection of the path Pwu, the
(x, y)-subsection of the path Pw, and the (u, y)-subsection of the path Pu

produces a cycle in G of length at most dG(u, v) + dG(w, v) + dG(u,w) ≤
k+k+ 2k = 4k, contradicting the fact that the girth g ≥ 4k+ 3. Therefore,
γk(G) = |S| = |K|+ |L| ≥ dg/(2k + 1)e, as desired. �

The lower bound of Theorem 3.6 is tight, as may be seen by taking G to
be a cycle Cn, where n ≡ 0 mod (2k + 1). We note that G has girth g = n
and, by Proposition 3.4, γk(G) = n/(2k + 1) = g/(2k + 1).

4. Direct Product Graphs

The direct product graph, G × H, of graphs G and H is the graph with
vertex set V (G)× V (H) and with edges (g1, h1)(g2, h2), where g1g2 ∈ E(G)
and h1h2 ∈ E(H). Let A ⊆ V (G × H). The projection of A onto G is
defined as

PG(A) = {g ∈ V (G) : (g, h) ∈ A for some h ∈ V (H)}.
Similarly, the projection of A onto H is defined as

PH(A) = {g ∈ V (H) : (g, h) ∈ A for some h ∈ V (G)}.
For a detailed discussion on direct product graphs, we refer the reader to

the handbook on graph products [5]. There have been various studies on
the domination number of direct product graphs. For example, Mekǐs [16]
proved the following lower bound on the domination number of direct prod-
uct graphs.

Theorem 4.1 ([16]). If G and H are connected graphs, then

γ(G×H) ≥ γ(G) + γ(H)− 1.

Staying within the theme of our previous results, we now prove a projec-
tion lemma which will enable us generalize the result of Theorem 4.1 on the
domination number to the k-domination number.

Lemma 4.2 (Projection Lemma). Let G and H be connected graphs. If D
is a k-dominating set of G×H, then PG(D) is a k-dominating set of G and
PH(D) is a k-dominating set of H.
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Proof. Let D ⊆ V (G × H) be a k-dominating set of G × H. We show
firstly that PG(D) is a k-dominating set of G. Let g be a vertex in V (G).
If g ∈ PG(D), then g is clearly k-dominated by PG(D). Hence, we may
assume that g ∈ V (G)\PG(D). Let h be an arbitrary vertex in V (H). Since
g /∈ PG(D), the vertex (g, h) /∈ D. However, the set D is a k-dominating
set of G × H, and so (g, h) is within distance k from D in G; that is,
dG×H((g, h), D) ≤ k. Let (g0, h0), (g1, h1), . . . , (gr, hr) be a shortest path
from (g, h) to D in G × H, where (g, h) = (g0, h0) and (gr, hr) ∈ D. By
assumption, 1 ≤ r ≤ k. For i ∈ {0, . . . , r − 1}, the vertices (gi, hi) and
(gi+1, hi+1) are adjacent in G × H. Hence, by the definition of the direct
product graph, the vertices gi and gi+1 are adjacent in G, implying that
g0g1 . . . gr is a (g0, gr)-walk in G of length r. This in turn implies that there
is a (g0, gr)-path in G of length r. Recall that g = g0 and 1 ≤ r ≤ k. Since
(gr, hr) ∈ D, the vertex gr ∈ PG(D). Hence, there is a path from g to a
vertex of PG(D) in G of length at most k. Since g is an arbitrary vertex in
V (G), the set PG(D) is therefore a k-dominating set of G. Analogously, the
set PH(D) is a k-dominating set of H. �

Using our Projection Lemma, we are now in a position to generalize The-
orem 4.1.

Theorem 4.3. If G and H are connected graphs, then

γk(G×H) ≥ γk(G) + γk(H)− 1.

Proof. Let D ⊆ V (G × H) be a minimum k-dominating set of G × H.
Suppose, to the contrary, that

(∗) |D| ≤ γk(G) + γk(H)− 2.

By Lemma 4.2, PG(D) is a k-dominating set of G and PH(D) is a k-
dominating set of H. Therefore, we have that |D| ≥ |PG(D)| ≥ γk(G)
and |D| ≥ |PH(D)| ≥ γk(H). If γk(G) = 1, then by (∗) we have,

γk(H)− 1 ≥ |D| ≥ γk(H),

which is a contradiction. Therefore, γk(G) ≥ 2. Analogously, γk(H) ≥ 2.
Recall that |PG(D)| ≥ γk(G). We now remove vertices from the set PG(D)

until we obtain a set, DG say, of cardinality exactly γk(G) − 1. Thus, DG

is a proper subset of PG(D) of cardinality γk(G) − 1. Since DG is not a k-
dominating set of G, there exists a vertex g ∈ V (G) that is not k-dominated
by the set DG in G, that is, dG(g,DG) > k. Let DG = {g1, . . . , gt}, where
t = γk(G) − 1 ≥ 1. For each i ∈ [t], there exists a (not necessarily unique)
vertex hi ∈ V (H) such that (gi, hi) ∈ D, as DG ⊆ PG(D). We now consider
the set

D0 = {(g1, h1), . . . , (gt, ht)},

and note that D0 ⊂ D and |D0| = γk(G)− 1. By (∗), we note that
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|PH(D \D0)| ≤ |D \D0|
= |D| − |D0|
≤ (γk(G) + γk(H)− 2)− (γk(G)− 1)

= γk(H)− 1

< γk(H).

Thus there exists a vertex h ∈ V (H) that is not k-dominated by the set
PH(D \D0) in H, that is, dH(h, PH(D \D0)) > k.

We now consider the vertex (g, h) ∈ V (G×H). Since D is a k-dominating
set of G×H, the vertex (g, h) is k-dominated by some vertex, say (g∗, h∗),
of D in G×H. An analogous proof as in the proof of Lemma 4.2 shows that
dG(g, g∗) ≤ k and dH(h, h∗) ≤ k. If (g∗, h∗) ∈ D \ D0, then h∗ ∈ PH(D \
D0), implying that dH(h, PH(D \ D0)) ≤ dH(h, h∗) ≤ k, a contradiction.
Hence, (g∗, h∗) ∈ D0. This in turn implies that g∗ ∈ PG(D0) = GD. Thus,
dG(g,DG) ≤ dG(g, g∗) ≤ k, contradicting the fact that dG(g,DG) > k.
Therefore, the assumption that |D| ≤ γk(G) + γk(H)− 2 must be false, and
the result follows. �
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