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Abstract

If k ≥ 1 and G = (V,E) is a finite connected graph, S ⊆ V is said a distance k-dominating set if every
vertex v ∈ V is within distance k from some vertex of S. The distance k-domination number γkw(G) is the
minimum cardinality among all distance k-dominating sets of G. A set S ⊆ V is a total dominating set if
every vertex v ∈ V satisfies δS(v) ≥ 1 and the total domination number, denoted by γt(G), is the minimum
cardinality among all total dominating sets of G. The study of hyperbolic graphs is an interesting topic
since the hyperbolicity of any geodesic metric space is equivalent to the hyperbolicity of a graph related
to it. In this paper we obtain relationships between the hyperbolicity constant δ(G) and some domination
parameters of a graph G. The results in this work are inequalities, such as γkw(G) ≥ 2δ(G)/(2k + 1) and
δ(G) ≤ γt(G)/2 + 3.
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1. Introduction

The idea of domination in graphs was mathematically formalized by Berge [2] and Ore [24] in 1962.
Currently, this topic has been detailed in the two, well-known, books by Haynes, Hedetniemi, and Slater.
The theory of domination in graphs is an area of increasing interest in discrete mathematics and combinatorial
computing. Besides of the mathematical and combinatorial importance of the theory, it has been applied
successfully in different practical problems such as: analysis of social networks [19], efficient identification of
web communities [10], bioinformatics [15], foodwebs [20]. Another application of the concept of domination
is the study of the transmission of information in the network associated with defense systems [25].

In [6], Cockayne, Gamble and Shepherd defined a generalization of domination in graphs as follows: given
a graph G = (V,E), a set S ⊆ V is a k-dominating set if every vertex v ∈ V \ S satisfies δS(v) ≥ k. The
k-domination number γk(G) is the minimum cardinality among all k-dominating sets. A set S ⊆ V (G) is a
total k-dominating set if every vertex v ∈ V (G) satisfies δS(v) ≥ k. The total k-domination number γkt(G) is
the minimum cardinality among all total k-dominating sets (see [9, 14, 16]), and the total domination number,
denoted by γt(G), is the minimum cardinality among all total dominating sets, that is, γt(G) = γ1t(G) (see
[5, 9]).

Hyperbolic spaces, defined by Gromov in [12], play an important role in geometric group theory and in
the geometry of negatively curved spaces (see [1, 4, 11, 12]). The concept of Gromov hyperbolicity grasps
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the essence of negatively curved spaces like the classical hyperbolic space, Riemannian manifolds of negative
sectional curvature bounded away from 0, and of discrete spaces like trees and the Cayley graphs of many
finitely generated groups. It is remarkable that a simple concept leads to such a rich general theory (see
[1, 4, 11, 12]). As observed in [4, Section 1.3], the hyperbolicity of a geodesic metric space is equivalent to
the hyperbolicity of a graph related to it.

We say that a curve γ : [a, b]→ X in a metric space X is a geodesic if we have L(γ|[t,s]) = d(γ(t), γ(s)) =
|t−s| for every s, t ∈ [a, b], where L and d denote length and distance, respectively, and γ|[t,s] is the restriction
of the curve γ to the interval [t, s] (then γ is equipped with an arc-length parametrization). The metric space
X is said geodesic if for every couple of points in X there exists a geodesic joining them; we denote by [xy]
any geodesic joining x and y; this notation is ambiguous, since in general we do not have uniqueness of
geodesics, but it is very convenient. Consequently, any geodesic metric space is connected. If the metric
space X is a graph, then the edge joining the vertices u and v will be denoted by uv.

In order to consider a graph G as a geodesic metric space, we identify (by an isometry) any edge
[u, v] ∈ E(G) with the interval [0, 1] in the real line; then the edge [u, v] (considered as a graph with just
one edge) is isometric to the interval [0, 1]. Thus, the points in G are the vertices and, also, the points in
the interior of any edge of G. In this way, any connected graph G has a natural distance defined on its
points, induced by taking shortest paths in G, and we can see G as a metric graph. Throughout this paper,
G = (V,E) = (V (G), E(G)) denotes a connected finite graph such that every edge has length 1 and V 6= ∅.
These properties guarantee that G is a geodesic metric space. Note that the connectedness of the graph is
not an important restriction. Since any domination parameter of a non-connected graph G is the sum of
the values of this domination parameter of the connected components of G, and any hyperbolicity constant
of a non-connected graph G is the supremum of the values of this hyperbolicity constant of the connected
components of G, the results of this paper can be trivially extended to non-connected graphs.

If X is a geodesic metric space and x1, x2, x3 ∈ X, the union of three geodesics [x1x2], [x2x3] and [x3x1] is
a geodesic triangle that will be denoted by T = {x1, x2, x3} and we will say that x1, x2 and x3 are the vertices
of T ; it is usual to write also T = {[x1x2], [x2x3], [x3x1]}. We say that T is δ-thin if any side of T is contained
in the δ-neighborhood of the union of the two other sides. We denote by δ(T ) the sharp thin constant of
T , i.e., δ(T ) := inf{δ ≥ 0 : T is δ-thin }. The space X is δ-hyperbolic (or satisfies the Rips condition with
constant δ) if every geodesic triangle in X is δ-thin. We denote by δ(X) the sharp hyperbolicity constant of
X, i.e., δ(X) := sup{δ(T ) : T is a geodesic triangle in X }. We say that X is hyperbolic if X is δ-hyperbolic
for some δ ≥ 0; then X is hyperbolic if and only if δ(X) < ∞. If we have a triangle with two identical
vertices, we call it a “bigon”. Obviously, every bigon in a δ-hyperbolic space is δ-thin.

In this paper we obtain relationships between the hyperbolicity constant δ(G) and some domination
parameters of a graph G. The results in this work are inequalities, such as γkw(G) ≥ 2δ(G)/(2k + 1)
(Theorem 2.7) and δ(G) ≤ γt(G)/2 + 3 (Theorem 2.11).

2. Domination and hyperbolicity

In the classical references on this subject (see, e.g., [4, 11]) appear several different definitions of Gromov
hyperbolicity, which are equivalent in the sense that if X is δ-hyperbolic with respect to one definition, then
it is δ′-hyperbolic with respect to another definition (for some δ′ related to δ). We have chosen the Rips
definition by its deep geometric meaning [11].

Let us define the Gromov product of x, y ∈ G with base point w ∈ G by

(x, y)w :=
1

2

(
dG(x,w) + dG(y, w)− dG(x, y)

)
.

If G is a Gromov hyperbolic graph, it holds

(x, z)w ≥ min
{

(x, y)w, (y, z)w
}
− δ (2.1)
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for every x, y, z, w ∈ G and some constant δ ≥ 0 (see e.g. [1, 11]). Let us denote by δ∗(G) the sharp constant
for this inequality, i.e.,

δ∗(G) := sup
{

min
{

(x, y)w, (y, z)w
}
− (x, z)w : x, y, z, w ∈ G

}
.

It is well-known that (2.1) is, in fact, equivalent to our definition of Gromov hyperbolicity; furthermore, we
have δ∗(G) ≤ 4 δ(G) and δ(G) ≤ 3 δ∗(G) (see e.g. [1, 11]). In [28, Proposition II.20] we found the following
improvement of the previous inequality δ∗(G) ≤ 2 δ(G).

A subgraph Γ of G is said isometric if dΓ(x, y) = dG(x, y) for every x, y ∈ Γ (in particular, every isometric
graph is connected).

The following result is elementary.

Lemma 2.1. If Γ is an isometric subgraph of G, then δ(Γ) ≤ δ(G) and δ∗(Γ) ≤ δ∗(G).

In [18] is introduced the concept of distance domination (see also [17], [13], [22]). Given a graph G and
k ≥ 1, we say that a subset of vertices S ⊂ V (G) is distance k-dominating if for any vertex v ∈ V (G) there
is w ∈ S with dG(v, w) ≤ k. Since dG(w,w) = 0 ≤ k, we can replace the condition “dG(v, w) ≤ k for any
v ∈ V (G)” by “dG(v, w) ≤ k for any v ∈ V (G) \ S”.

We say that a subgraph Γ of G is distance k-dominating if V (Γ) is distance k-dominating.

Theorem 2.2. Let G be a graph, k ≥ 1 and Γ an isometric distance k-dominating subgraph of G. Then

δ∗(Γ) ≤ δ∗(G) ≤ δ∗(Γ) + 6k + 3.

Proof. Lemma 2.1 gives the first inequality.
Let f be a projection map f : G → Γ, i.e., a map such that dG(x, f(x)) = dG(x,Γ) for every x ∈ G

(in particular, f |Γ is the identity map). Since Γ an isometric distance k-dominating subgraph, we have
dG(x, f(x)) ≤ k + 1/2 and

(f(x), f(y))f(w) =
1

2

(
dΓ(f(x), f(w)) + dΓ(f(y), f(w))− dΓ(f(x), f(y))

)
=

1

2

(
dG(f(x), f(w)) + dG(f(y), f(w))− dG(f(x), f(y))

)
≤ 1

2

(
dG(x,w) + 2k + 1 + dG(y, w) + 2k + 1− dG(x, y) + 2k + 1

)
= (x, y)w + 3k +

3

2
.

We obtain in a similar way

(f(x), f(y))f(w) ≥ (x, y)w − 3k − 3

2
,

and thus

(x, z)w ≥ (f(x), f(z))f(w) − 3k − 3

2

≥ min
{

(f(x), f(y))f(w), (f(y), f(z))f(w)

}
− δ∗(Γ)− 3k − 3

2

≥ min
{

(x, y)w − 3k − 3

2
, (y, z)w − 3k − 3

2

}
− δ∗(Γ)− 3k − 3

2

= min
{

(x, y)w, (y, z)w
}
− δ∗(Γ)− 6k − 3.

Hence, we conclude
δ∗(G) ≤ δ∗(Γ) + 6k + 3.
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Theorem 2.2 has the following consequence.

Theorem 2.3. Let G be a graph, k ≥ 1 and Γ an isometric distance k-dominating subgraph of G. Then

δ(Γ) ≤ δ(G) ≤ 6 δ(Γ) + 18k + 9.

Proof. Lemma 2.1 gives the first inequality.
Using the inequalities relating δ∗(G) and δ(G) and Theorem 2.2, we conclude

δ(G) ≤ 3 δ∗(G) ≤ 3
(
δ∗(Γ) + 6k + 3

)
≤ 6 δ(G) + 18k + 9.

The following example shows that it is not possible to have the inequality

δ(G) ≤ Ψ
(
δ(Γ)

)
,

for every graph G and distance k-dominating subgraph Γ (not necessarily isometric) and some function Ψ.
For each integer n > 2k consider the cycle graph Cn with vertices V (Cn) = {v1, v2, . . . , vn−1, vn} and edges
E(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1} and the subgraph Γn induced by {v1, . . . , vn−2k}. It is clear that
V (Γn) is a distance k-dominating set. Since Γn is a tree, δ(Γn) = 0. However, δ(Cn) = n/4.

For any graph G, we define, as usual,

diamV (G) := sup
{
dG(v, w) | v, w ∈ V (G)

}
,

diamG := sup
{
dG(x, y) | x, y ∈ G

}
,

i.e, diamV (G) is the diameter of the set of vertices of G, and diamG is the diameter of the whole graph G
(recall that in order to have a geodesic metric space, G must contain both the vertices and the points in the
interior of any edge of G).

The following result is well-known (see, e.g., [27, Theorem 8] for a proof).

Lemma 2.4. In any graph G the inequality

δ(G) ≤ 1

2
diamG ≤ 1

2

(
diamV (G) + 1

)
holds.

Given a graph G, we say that a subset of vertices S ⊂ V (G) is dominating if every vertex v ∈ V (G) \ S
has a neighbor in S. We define the domination number of G as

γ(G) := min
{
|S| : S is a dominating set of G

}
.

Given a graph G, we say that a subset of vertices S ⊂ V (G) is total-dominating if every vertex v ∈ V (G)
has a neighbor in S. We define the total-domination number of G as

γt(G) := min
{
|S| : S is a total-dominating set of G

}
.

Given a graph G, we define the distance k-domination number of G as

γk(G) := min
{
|S| : S is a distance k-dominating set of G

}
.

It is well-known (see [8, Theorem 4]) that

γt(G) ≥ diamV (G) + 1

2
.

Thus, Lemma 2.4 gives the following result.
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Proposition 2.5. If G is a graph, then
δ(G) ≤ γt(G) .

Proposition 2.5 can be improved for graphs with small maximum degree.

Theorem 2.6. If G is a graph with maximum degree ∆, then

δ(G) ≤ ∆

4
γt(G) .

Proof. Let S ⊆ V (G) be a total dominating set with |S| = γt(G), and n := |V (G)|. Denote by S the
complement S := V (G) \ S of the set S, and by ES,S the set of edges joining a vertex in S with a vertex in

S. Since S is a dominating set,
∣∣S∣∣ ≤ ∣∣ES,S∣∣. Since S is a total dominating set,

∣∣ES,S∣∣ ≤ (∆− 1)|S|, and we
conclude

n− |S| =
∣∣S∣∣ ≤ ∣∣ES,S∣∣ ≤ (∆− 1)|S|, n ≤ ∆γt(G).

The inequality δ(G) ≤ n/4 (see [23, Theorem 30]) gives δ(G) ≤ ∆γt(G)/4.

We have similar results for γk(G).

Theorem 2.7. Let G be a graph and k ≥ 1. Then

γk(G) ≥ diamV (G) + 1

2k + 1
, γk(G) ≥ 2δ(G)

2k + 1
.

Proof. Let S be a distance k-dominating set of G with |S| = γk(G), and σ = [uv] a geodesic in G with u, v ∈
V (G) and dG(u, v) = diamV (G). Since S is distance k-dominating, there exists s1 ∈ S with dG(u, s1) ≤ k.

Let {u1, u2, . . . , ur, ur+1} = V (G) ∩ σ with u1 = u, ur+1 = v, r = diamV (G) and uiui+1 ∈ E(G) for
1 ≤ i ≤ r. Define

t1 := max
{

1 ≤ t ≤ r + 1 : dG(ut, s1) ≤ k
}
.

Since σ is a geodesic and the diameter of the closed ball BG(u1, k) is at most 2k, we have t1 ≤ 2k + 1.
If r + 1 > 2k + 1, then there exists s2 ∈ S with dG(ut1+1, s2) ≤ k. Define

t2 := max
{
t1 + 1 ≤ t ≤ r + 1 : dG(ut, s2) ≤ k

}
.

Thus, t2 ≤ 4k + 2.
If r + 1 > 4k + 2, then we can repeat this process obtaining two finite sequences {s1, . . . , sj} ⊆ S and

1 ≤ t1 < t2 < · · · < tj ≤ r + 1 with r + 1 ≤ (2k + 1)j. Hence, we obtain

diamV (G) + 1

2k + 1
=

r + 1

2k + 1
≤ j =

∣∣{s1, . . . , sj}
∣∣ ≤ |S| = γk(G),

and Lemma 2.4 gives the second inequality.

Given a graph G, we say that a subset of vertices S ⊂ V (G) is k-total-dominating (k ≥ 1) if every
vertex v ∈ V (G) has k neighbors in S. Denote by 〈S〉 the subgraph of G induced by S. We say that
S is k-total-connected-dominating if it is k-total-dominating and 〈S〉 is connected. We define the k-total-
connected-domination number of G as

γktc(G) := min
{
|S| : S is a k-total-connected-dominating set of G

}
.

As usual, we denote by btc the lower integer part of t, i.e., the largest integer least than or equal to t.
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Theorem 2.8. If G is a graph and k ≥ 2, then

δ(G) ≤ 1

2
max

{
5,

⌊
3 γktc(G)− 2

k + 1

⌋
+ 1

}
.

Proof. Given a graph G, fix a k-total-connected-dominating set S with |S| = γktc(G). Define s := diam〈S〉 S
and choose u, v ∈ V (S) with dS(u, v) = s. For each 0 ≤ j ≤ s, let nj := |Sj | with Sj := {w ∈ S : dS(w, u) =
j}. Note that a vertex of Sj and a vertex of S0 ∪ S1 ∪ · · · ∪ Sj−2 can not be neighbors for 2 ≤ j ≤ s. Since
〈S〉 is connected, we have

∑s
j=0 nj = |S| = γktc(G), n0 = 1, n1 ≥ k and nj ≥ 1 for each 2 ≤ j ≤ s.

Since S is a k-total-connected-dominating set S, if s < 3, then diamG V (G) ≤ s+ 2 ≤ 4 and Lemma 2.4
gives δ(G) ≤ 5/2. Hence, we can assume that s ≥ 3.

Define ns+1 := 0 and

as :=
s∑
j=3

(
nj−1 + nj + nj+1

)
=

 n2 + 2n3 + 3
∑s−1
j=4 nj + 2ns, if s > 4,

n2 + 2n3 + 2n4, if s = 4,
n2 + n3, if s = 3.

Note that for any 3 ≤ j ≤ s, we have nj−1 + nj + nj+1 ≥ k + 1 and so, as ≥ (s− 2)(k + 1). Thus,

3|S| = 3
s∑
j=0

nj = 3 + 3n1 + 2n2 + n3 + ns + as

≥ 3 + 3k + 2 + 1 + 1 + (s− 2)(k + 1) = (s+ 1)(k + 1) + 4,

3|S| − 4

k + 1
≥ s+ 1,

diam〈S〉 S ≤
⌊

3|S| − 4

k + 1

⌋
− 1 =

⌊
3 γktc(G)− 4

k + 1

⌋
− 1.

Since S is a k-total-connected-dominating set, we have that diamG V (G) ≤ diam〈S〉 S+ 2. Let us assume
that diamG V (G) = diam〈S〉 S + 2. Hence, there exist u′, v′ ∈ V (G) \ S and u, v ∈ S with uu′, vv′ ∈ E(G)
and diamG V (G) = dG(u′, v′) = dS(u, v) + 2.

For each −1 ≤ j ≤ s + 1, let nj := |Sj+1| with Sj := {w ∈ S : dS(w, u′) = j}. Using the previous
argument, since S is a k-total-connected-dominating set, we have in this case n0, ns ≥ k and n1, n2, n3 ≥ 1.
Therefore, we deduce

3|S| = 3n0 + 3n1 + 2n2 + n3 + ns + as

≥ 3k + 3 + 2 + 1 + k + (s− 2)(k + 1) = (s+ 2)(k + 1) + 2,

diam〈S〉 S ≤
⌊

3 γktc(G)− 2

k + 1

⌋
− 2,

diamG V (G) ≤
⌊

3 γktc(G)− 2

k + 1

⌋
.

If diamG V (G) < diam〈S〉 S + 2, then

diamG V (G) ≤ diam〈S〉 S + 1 ≤
⌊

3 γktc(G)− 4

k + 1

⌋
≤
⌊

3 γktc(G)− 2

k + 1

⌋
.

Hence, we have

diamG V (G) ≤ max

{
4,

⌊
3 γktc(G)− 2

k + 1

⌋}
,
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and Lemma 2.4 gives

δ(G) ≤ 1

2
max

{
5,

⌊
3 γktc(G)− 2

k + 1

⌋
+ 1

}
.

As usual, by cycle in a graph we mean a simple closed curve, i.e., a path with different vertices, except
for the last one, which is equal to the first vertex.

Let us denote by J(G) the union of the set V (G) and the midpoints of the edges of G. Consider the set
T1 of geodesic triangles T in G that are cycles and such that the three vertices of the triangle T belong to
J(G), and denote by δ1(G) the infimum of the constants λ such that every triangle in T1 is λ-thin.

The following results, which appear in [3, Theorems 2.7 and 2.6], will be used throughout the paper.

Lemma 2.9. For any hyperbolic graph G, there exists a geodesic triangle T ∈ T1 such that δ(T ) = δ(G).

The next result will narrow the possible values for the hyperbolicity constant δ.

Lemma 2.10. If G is a graph, then δ(G) is a multiple of 1/4.

The two following results improve Proposition 2.5.
Given s ∈ R, denote by dse the upper integer part of s, i.e., the smallest integer greater than or equal to

s.

Theorem 2.11. If G is a graph, then

δ(G) ≤

{
1
2 γt(G) + 1, if γt(G) ≤ 3,
1
2 γt(G) + 3, if γt(G) ≥ 4.

Proof. Fix a total dominating set S ⊂ V (G) with |S| = γt(G).
Assume first that γt(G) ≤ 3. Thus, S is a connected set, and we deduce diamG S ≤ γt(G) − 1 and

diamG V (G) ≤ γt(G) + 1. Thus, Lemma 2.4 gives δ(G) ≤ γt(G)/2 + 1.
Assume now that γt(G) ≥ 4.
By Lemma 2.9, there exist a triangle T = {x, y, z} that is a cycle with x, y, z ∈ J(G) and p ∈ [xy]

such that dG(p, [xz] ∪ [zy]) = δ(G). Let V (G) ∩ [xy] = {a1, a2, . . . , ar} with ajaj+1 ∈ E(G) ∩ [xy] for
1 ≤ j < r, dG(a1, x) ≤ 1/2 and dG(ar, y) ≤ 1/2. Let V (G) ∩ ([xz] ∪ [zy]) = {b1, b2, . . . , bβ} with bjbj+1 ∈
E(G) ∩ ([xz] ∪ [zy]) for 1 ≤ j < β, dG(b1, x) ≤ 1/2 and dG(bβ , y) ≤ 1/2 (note that r ≤ β, since [xy]
is a geodesic and x, y ∈ J(G)). Let 1 ≤ α ≤ α′ ≤ β be such that V (G) ∩ [xz] = {b1, b2, . . . , bα} and
V (G) ∩ [zy] = {bα′ , bα′+1, . . . , bβ} (note that α = α′ if and only if z ∈ V (G); otherwise, α′ = α+ 1).

If aj ∈ S, then we define sj := aj ; since S is a total dominating set, if aj /∈ S, then there exists
sj ∈ N(aj) ∩ S. If bj ∈ S, then we define sj := bj ; since S is a total dominating set, if bj /∈ S, then there
exists sj ∈ N(bj) ∩ S.

We are going to define subsets S1, S2 ⊂ S associated to [xy] and [xz] ∪ [zy], respectively.
Since [xy] is a geodesic, if si = sj , then |i− j| ≤ 2. Let I be the set

I :=
{

1 ≤ i ≤ r − 2 : si = si+1 = si+2

}
.

If I = ∅, then ∣∣{s1, s2, . . . , sr}
∣∣ ≥ ⌈r

2

⌉
.

Hence, the set S1 := {s1, s2, . . . , sr} satisfies |S1| ≥ dr/2e.
Since S is a total dominating set, if I 6= ∅ and i ∈ I, then there exists s′i ∈ N(si) ∩ S. Assume

that i, j ∈ I with i 6= j (without loss of generality we can assume that i < j, and thus i + 3 ≤ j);
then s′i 6= s′j , since otherwise 5 = i + 3 + 2 − i ≤ j + 2 − i = dG(ai, aj+2) ≤ dG(ai, si) + dG(si, s

′
i) +
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dG(s′j , sj+2)+dG(sj+2, aj+2) ≤ 4, a contradiction. Note that s′i /∈ {ai, ai+1, ai+2}; also, s′i /∈ {a1, a2, . . . , ar},
since otherwise si ∈ N(ai) ∩N(ai+1) ∩N(ai+2) ∩N(s′i), a contradiction. Besides, s′i 6= sj if sj = sj+1 and
{i, i+ 1, i+ 2} ∩ {j, j + 1} = ∅. Furthermore, there exists at most one j with s′i = sj , j /∈ {i, i+ 1, i+ 2} and
sj−1 6= sj 6= sj+1. Thus, ∣∣ ∪i∈I {s′i} ∪ {s1, s2, . . . , sr}

∣∣ ≥ ⌈r
2

⌉
.

Therefore, the set S1 := ∪i∈I{s′i} ∪ {s1, s2, . . . , sr} satisfies |S1| ≥ dr/2e in both cases.
Next, we define a similar set associated to [xz] ∪ [zy].
Given v1, v2, . . . , vk ∈ V (G) such that for each 1 ≤ j < k we have either vjvj+1 ∈ E(G) or vj = vj+1, we

denote by v1v2 · · · vk the path containing the edges (or vertices) vjvj+1 for 1 ≤ j < k.
Let us consider the sets

Γ0 :=
{
γ path ⊂ G : γ = b1b2 · · · bβ

}
,

Γ1 :=
{
γ path ⊂ G : γ = b1b2 · · · bisibj · · · bβ if si = sj

}
,

Γ2 :=
{
γ path ⊂ G : γ = b1b2 · · · bisisjbj · · · bβ if sisj ∈ E(G)

}
,

Γ3 :=
{
γ path ⊂ G : γ = b1b2 · · · bisis0sjbj · · · bβ if ∃ s0 ∈ S ∩N(si) ∩N(sj)

}
,

Γ := Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3.

Let us choose σ ∈ Γ with
L(σ) = min

{
L(γ) : γ ∈ Γ

}
.

Since σ joins b1 and bβ , we have that |σ ∩ V (G)| ≥ r. Let i0, j0 be the integers such that 1 ≤ i0 ≤ α ≤ α′ ≤
j0 ≤ β, b1, . . . , bi0 , bj0 , . . . , bβ ∈ σ, bi0+1 /∈ σ ∩ [xz] and bj0−1 /∈ σ ∩ [zy].

Let us define the set

I :=
{

1 ≤ i ≤ i0 − 2 : si = si+1 = si+2

}
∪
{
j0 ≤ i ≤ β − 2 : si = si+1 = si+2

}
. (2.2)

Since S is a total dominating set, if i ∈ I, then there exists s′i ∈ N(si).

Case A. Assume that σ /∈ Γ0.
Since σ /∈ Γ0, the minimality of σ gives si0 6= si for every 1 ≤ i < i0 and sj0 6= sj for every j0 < j ≤ β;

in particular, this gives i0 − 2, j0 /∈ I, and we can write

I =
{

1 ≤ i < i0 − 2 : si = si+1 = si+2

}
∪
{
j0 < i ≤ β − 2 : si = si+1 = si+2

}
. (2.3)

If i, j ∈ I with i 6= j and either 1 ≤ i, j < i0 − 2 or j0 < i, j ≤ β − 2, then the argument in the case of S1

gives s′i 6= s′j . If 1 ≤ i < i0 − 2 and j0 < j ≤ β − 2, then the minimality of σ gives s′i 6= s′j .

Also, the minimality of σ gives s′i 6= sj if i ∈ I with 1 ≤ i ≤ i0 − 2 and j0 ≤ j ≤ β, and si 6= s′j if j ∈ I
with 1 ≤ i ≤ i0 and j0 ≤ j ≤ β − 2.

If 1 ≤ i < i0 and j0 < j ≤ β, then the minimality of σ also gives si 6= sj , si0 6= sj and si 6= sj0 . Note
that in the paths bisibj (if σ ∈ Γ1 and si = sj), bisisjbj (if σ ∈ Γ2 and sisj ∈ E(G)), and bisis0sjbj (if
σ ∈ Γ3 and there exists s0 ∈ S ∩ N(si) ∩ N(sj)), the cardinal of the vertices in S plus 1 is greater than
or equal to the cardinal of the points in V (G) \ S. Thus, the set S2 := ∪i∈I{s

′
i} ∪ {s1, s2, . . . , sr} satisfies

|S2| ≥ d(r − 1)/2e.
Case B. Assume that σ ∈ Γ0.
Note that I is defined by (2.2); since σ ∈ Γ0, (2.3) can be false.
As in Case A, let us define S2 := ∪i∈I{s

′
i} ∪ {s1, s2, . . . , sr}.

Assume that z /∈ V (G), since the argument when z ∈ V (G) is analogous. Thus, i0 = α and j0 = α′ =
α+ 1.

The minimality of σ gives the following six facts:
si 6= sj for every 1 ≤ i < i0 and j0 < j ≤ β.
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si0 6= sj for every j0 + 2 ≤ j ≤ β and sj0 6= si for every 1 ≤ i ≤ i0 − 2.
s′i 6= s′j if i, j ∈ I with i 6= j and either 1 ≤ i, j ≤ i0 − 2 or j0 ≤ i, j ≤ β − 2.

s′i 6= s′j if i, j ∈ I with 1 ≤ i ≤ i0 − 2 and j0 ≤ j ≤ β − 2.

s′i 6= sj if i ∈ I with 1 ≤ i ≤ i0 − 2 and j0 < j ≤ β.
si 6= s′j if j ∈ I with 1 ≤ i < i0 and j0 ≤ j ≤ β − 2.

Case B.1. If si 6= sj for every 1 ≤ i ≤ i0 and j0 ≤ j ≤ β, s′i 6= sj for every i ∈ I with 1 ≤ i ≤ i0 − 2 and
j0 ≤ j ≤ β, and si 6= s′j for every j ∈ I with 1 ≤ i ≤ i0 and j0 ≤ j ≤ β − 2, then |S2| ≥ dr/2e.

Case B.2. Assume that we are not in Case B.1. We have five different cases:

Case B.2.1. i0 − 2 ∈ I and s′i0 = sj0 . The minimality of σ gives si 6= sj for every 1 ≤ i ≤ i0 and

j0 ≤ j ≤ β, and si 6= s′j for every j ∈ I with 1 ≤ i ≤ i0 and j0 ≤ j ≤ β − 2. Besides, the two vertices
si0 and s′i0 = sj0 in S2 are associated to the four vertices bi0−2, bi0−1, bi0 , bj0 . Hence, we also conclude that
|S2| ≥ dr/2e.

Case B.2.2. j0 ∈ I and s′j0 = si0 . A symmetric argument to the one in the previous case also gives
|S2| ≥ dr/2e.

Case B.2.3. si0 = sj0+1 and si0−1 6= sj0 . The minimality of σ gives si 6= si0 for every 1 ≤ i < i0 and
sj0+1 6= sj for every j0 + 2 ≤ j ≤ β. Thus, i0 − 2, j0 /∈ I and we conclude s′i 6= sj if i ∈ I with 1 ≤ i ≤ i0 − 2
and j0 ≤ j ≤ β, and si 6= s′j if j ∈ I with 1 ≤ i ≤ i0 and j0 ≤ j ≤ β − 2. The vertex si0 = sj0+1 ∈ S2 is
associated to the three vertices bi0 , bj0 , bj0+1, and so, twice the cardinal of the vertices in S2 plus 1 is greater
than or equal to the cardinal of the points in {b1, b2, . . . , bβ}. Hence, |S2| ≥ d(r − 1)/2e.

Case B.2.4. si0−1 = sj0 and si0 6= sj0+1. A symmetric argument to the one in the previous case also
gives |S2| ≥ d(r − 1)/2e.

Case B.2.5. si0−1 = sj0 and si0 = sj0+1. The minimality of σ gives si0−1 6= sj0+1. A similar argument
to the one in Case B.2.3 (now, with the two vertices si0−1 = sj0 , si0 = sj0+1 ∈ S2 associated to the four
vertices bi0−1, bi0 , bj0 , bj0+1) gives |S2| ≥ dr/2e.

Hence, we have in every case |S2| ≥ d(r − 1)/2e.

We consider several cases.

(1) Assume first that S1 ∩ S2 = ∅. Thus,

γt(G) = |S| ≥ |S1|+ |S2| ≥
⌈r

2

⌉
+
⌈r − 1

2

⌉
= r.

Since x, y ∈ J(G) and | [xy] ∩ V (G)| = r, we conclude L([xy]) ≤ r ≤ γt(G), and

δ(G) = dG(p, [xz] ∪ [zy]) ≤ dG(p, {x, y}) ≤ 1

2
L([xy]) ≤ 1

2
γt(G) .

(2) Assume now that S1 ∩ S2 6= ∅.
(2.1) Assume that dG(p, [xz] ∪ [zy]) ≤ 5. Thus,

δ(G) = dG(p, [xz] ∪ [zy]) ≤ 4

2
+ 3 ≤ 1

2
γt(G) + 3,

since γt(G) ≥ 4.

(2.2) Assume that dG(p, [xz] ∪ [zy]) > 5. If p = al ∈ V (G), then S2 does not intersect the subset of
S1 associated to {al} (i.e., sl and perhaps s′l); and if p /∈ V (G), then p ∈ alal+1 ∈ E(G) and S2 does not
intersect the subset of S1 associated to {al, al+1} (i.e., sl, sl+1 and perhaps s′l and/or s′l+1). Thus, there exists
a maximal connected subset A := {ai1 , ai1+1, . . . , ai2−1, ai2} of [xy] ∩ V (G) (with respect to the inclusion)
such that p ∈ [ai1ai2 ] and S1(A) ∩ S2 = ∅, where S1(A) is the subset of S1 associated to A.
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Fix a positive integer u.

(2.2.1) If i1 ≥ u+ 1 and i2 ≤ r − u, then |σ ∩ V (G)| ≥ r ≥ |A|+ 2u and

γt(G) = |S| ≥ |S1(A)|+ |S2| ≥
⌈1

2
|A|
⌉

+
⌈1

2

(
|A|+ 2u− 1

)⌉
≥
⌈1

2
|A|
⌉

+
⌈1

2

(
|A| − 1

)⌉
+ u = |A|+ u.

The maximality of A gives dG(ai1−1, [xz] ∪ [zy]) ≤ 4 and dG(ai2+1, [xz] ∪ [zy]) ≤ 4. Let g1 (respectively, g2)
be a geodesic in G joining ai1−1 (respectively, ai2+1) and [xz] ∪ [zy], and ρ the curve

ρ := g1 ∪ ai1−1ai1 · · · ai2ai2+1 ∪ g2.

Since ρ joins two points in [xz] ∪ [zy], p ∈ ρ and L(ρ) ≤ 4 + |A|+ 1 + 4, we have

δ(G) = dG(p, [xz] ∪ [zy]) ≤ 1

2
L(ρ) ≤ 1

2
|A|+ 9

2
≤ 1

2
γt(G) +

9− u
2

.

(2.2.2) If i1 ≤ u and i2 ≥ r − u+ 1, then |σ ∩ V (G)| ≥ r ≥ |A|+ 1 (since S1 ∩ S2 6= ∅) and

γt(G) = |S| ≥ |S1(A)|+ |S2| ≥
⌈1

2
|A|
⌉

+
⌈1

2
|A|
⌉
≥ |A|.

We also have

dG(ai1 , x) ≤ dG(ai1 , a1) + dG(a1, x) ≤ u− 1 +
1

2
,

dG(ai2 , y) ≤ dG(ai2 , ar) + dG(ar, y) ≤ u− 1 +
1

2
,

L([xy]) = dG(x, ai1) + |A| − 1 + dG(ai2 , y) ≤ γt(G) + 2u− 2 ,

δ(G) = dG(p, [xz] ∪ [zy]) ≤ dG(p, {x, y}) ≤ 1

2
L([xy]) ≤ 1

2
γt(G) + u− 1.

(2.2.3) If i1 ≤ u and i2 ≤ r − u, then |σ ∩ V (G)| ≥ r ≥ |A|+ u and

γt(G) = |S| ≥ |S1(A)|+ |S2| ≥
⌈1

2
|A|
⌉

+
⌈1

2

(
|A|+ u− 1

)⌉
≥
⌈1

2
|A|
⌉

+
⌈1

2

(
|A| − 1

)⌉
+
⌊u

2

⌋
= |A|+

⌊u
2

⌋
.

The maximality of A gives dG(ai2+1, [xz] ∪ [zy]) ≤ 4. Let g be a geodesic in G joining ai2+1 and [xz] ∪ [zy],
and ρ the curve

ρ := [xai1 ] ∪ ai1 · · · ai2ai2+1 ∪ g.

Thus,

dG(ai1 , x) ≤ dG(ai1 , a1) + dG(a1, x) ≤ u− 1 +
1

2
,

L(ρ) ≤ u− 1 +
1

2
+ |A|+ 4 = u+

7

2
+ |A|.

Since ρ joins two points in [xz] ∪ [zy] and p ∈ ρ, we have

δ(G) = dG(p, [xz] ∪ [zy]) ≤ 1

2
L(ρ) ≤ 1

2

(
u+

7

2
+ |A|

)
≤ 1

2
γt(G) +

1

2

( 7

2
+ u−

⌊u
2

⌋)
.

(2.2.4) If i1 ≥ u+ 1 and i2 ≥ r − u+ 1, then a similar argument to the previous one in (2.2.3) gives the
same inequality for δ(G).
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Since the function

F (u) := max
{ 9− u

2
, u− 1,

1

2

( 7

2
+ u−

⌊u
2

⌋)}
,

with u ∈ Z+, attains its minimum value 3 for u = 3 and u = 4, we have

δ(G) ≤ 1

2
γt(G) + 3.

The following example shows that Theorem 2.11 is asymptotically sharp.
For each integer k ≥ 1 consider the cycle graph C4k with vertices V (C4k) = {v1, v2, . . . , v4k−1, v4k} and

edges E(C4k) = {v1v2, v2v3, . . . , v4k−1v4k, v4kv1}. Given points x, y /∈ V (C4k), let Gk be the graph with

V (Gk) = {x, y} ∪ V (C4k),

E(Gk) = {xv1, xv4k, yv2k, yv2k+1} ∪ E(C4k).

Consider the geodesics g1, g2 in Gk joining x and y with g1 ∩ g2 = {x, y}. If p is the midpoint of g1, then
Lemma 2.4 gives

1

2
diamGk ≥ δ(Gk) ≥ dGk

(p, g2) = dGk
(p, {x, y}) =

1

2
L(g1) = k +

1

2
=

1

2
diamGk,

and we conclude δ(Gk) = k + 1/2. [21] gives γt(C4k) = 2k, and one can check that γt(Gk) = γt(C4k) = 2k.
Hence, δ(Gk) = k + 1/2 = γt(Gk)/2 + 1/2.

One can think that perhaps it is possible to obtain an upper bound of γt(G) in terms of δ(G), i.e., the
inequality

γt(G) ≤ Ψ
(
δ(G)

)
, (2.4)

for every graph G and some function Ψ. However, this is not possible, as the following example shows. For
each integer n ≥ 2 consider the path graph Pn. Since Pn is a tree, δ(Pn) = 0, but limn→∞ γt(Pn) =∞.

However, we can obtain (2.4) for a kind of graphs.

Theorem 2.12. If G is a graph with an isometric dominating cycle C, then

γt(G) ≤ 4δ(G).

Proof. Since C is a dominating cycle, C ∩V (G) is a total dominating set and γt(G) ≤ |C ∩V (G)| = L(C) =
4δ(C). Since C is an isometric subgraph of G, Lemma 2.1 gives the inequality.

Theorem 2.13. If G is a graph with a dominating cycle C, then

δ(G) ≤ 1

2

⌊L(C)

2

⌋
+

3

2
,

and the inequality is sharp.

Proof. Since C is a dominating cycle, we have

diamV (G) ≤ diamV (C) + 2 =
⌊L(C)

2

⌋
+ 2,

and Lemma 2.4 gives the inequality. [26, Theorem 3.1] gives that the inequality is sharp.
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Proposition 2.14. If G is a graph with no induced C4 or P4, then

δ(G) ≤ 3

2
.

Proof. Since G is a graph with no induced C4 or P4, [29] (see also [7, Theorem 1]) gives that G has a
dominating vertex. Thus, diamV (G) ≤ 2 and Lemma 2.4 gives the inequality.

This result can be improved as follows.

Theorem 2.15. If G is a graph with no induced P4, then

δ(G) ≤ 5

4
,

and the inequality is sharp.

Proof. Seeking for a contradiction assume that diamV (G) > 2. Thus, there exist u, v ∈ V (G) with dG(u, v) =
3. Let u′, v′ ∈ V (G) with uu′, u′v′, v′v ∈ E(G). Since uu′v′v is a P4 on G, it is not induced and so,
dG(u, v) < 3, a contradiction. Hence, diamV (G) ≤ 2, diamG ≤ 3 and Lemma 2.4 gives δ(G) ≤ 3/2.

Seeking for a contradiction assume that δ(G) > 5/4. Thus, Lemma 2.10 gives δ(G) = 3/2. By Lemma
2.9, there exists a geodesic triangle T = {x, y, z} that is a cycle with x, y, z ∈ J(G) and δ(T ) = 3/2 =
dG(p, [yz] ∪ [zx]) for some p ∈ [xy]. Then dG(p, {x, y}) ≥ dG(p, [yz] ∪ [zx]) = 3/2 and dG(x, y) ≥ 3.
Therefore, diamG = 3, diamV (G) = 2, x, y ∈ J(G) \ V (G) and p ∈ V (G). Thus, x ∈ uxvx ∈ E(G)
and y ∈ uyvy ∈ E(G), with ux, uy ∈ [xy] and dG(uy, {ux, vx}) = 2, and so, uyux, uyvx /∈ E(G). Since
vxuxp uy is a P4 on G, it is not induced and so, vxp ∈ E(G) (recall that uyux, uyvx /∈ E(G)); thus,
3/2 = dG(p, [yz] ∪ [zx]) ≤ dG(p, vx) = 1, a contradiction. Hence, δ(G) ≤ 5/4.

Let K4 be a complete graph with vertices {v1, v2, v3, v4}. We denote by G the graph obtained from K4

by adding a new vertex v5 and two edges v5v1, v5v2. Denote by y the midpoint of v3v4. Let us consider the
geodesic bigon {v5, y} which is the union of the geodesics γ1 = v5v1∪v1v4∪ [v4y] and γ2 = v5v2∪v2v3∪ [v3y].
If p is the midpoint of γ1, then we have δ(G) ≥ dG(p, γ2) = 5/4. Since diamG = 5/2, Lemma 2.4 gives
δ(G) ≤ 5/4, and we conclude δ(G) = 5/4.
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