749 research outputs found

    Restrained and Other Domination Parameters in Complementary Prisms.

    Get PDF
    In this thesis, we will study several domination parameters of a family of graphs known as complementary prisms. We will first present the basic terminology and definitions necessary to understand the topic. Then, we will examine the known results addressing the domination number and the total domination number of complementary prisms. After this, we will present our main results, namely, results on the restrained domination number of complementary prisms. Subsequently results on the distance - k domination number, 2-step domination number and stratification of complementary prisms will be presented. Then, we will characterize when a complementary prism is Eulerian or bipartite, and we will obtain bounds on the chromatic number of a complementary prism. We will finish the thesis with a section on possible future problems

    Distance 2-domination in prisms of graphs

    Get PDF
    A set of vertices D of a graph G is a distance 2-dominating set of G if the distance between each vertex u ¿ ( V ( G ) - D ) and D is at most two. Let ¿ 2 ( G ) denote the size of a smallest distance 2 -dominating set of G . For any permutation p of the vertex set of G , the prism of G with respect to p is the graph pG obtained from G and a copy G ' of G by joining u ¿ V ( G ) with v ' ¿ V ( G ' ) if and only if v ' = p ( u ) . If ¿ 2 ( pG ) = ¿ 2 ( G ) for any permutation p of V ( G ) , then G is called a universal ¿ 2 - fixer. In this work we characterize the cycles and paths that are universal ¿ 2 -fixers.Peer ReviewedPostprint (author's final draft

    Domination in Functigraphs

    Get PDF
    Let G1G_1 and G2G_2 be disjoint copies of a graph GG, and let f:V(G1)→V(G2)f: V(G_1) \rightarrow V(G_2) be a function. Then a \emph{functigraph} C(G,f)=(V,E)C(G, f)=(V, E) has the vertex set V=V(G1)∪V(G2)V=V(G_1) \cup V(G_2) and the edge set E=E(G1)∪E(G2)∪{uv∣u∈V(G1),v∈V(G2),v=f(u)}E=E(G_1) \cup E(G_2) \cup \{uv \mid u \in V(G_1), v \in V(G_2), v=f(u)\}. A functigraph is a generalization of a \emph{permutation graph} (also known as a \emph{generalized prism}) in the sense of Chartrand and Harary. In this paper, we study domination in functigraphs. Let γ(G)\gamma(G) denote the domination number of GG. It is readily seen that γ(G)≤γ(C(G,f))≤2γ(G)\gamma(G) \le \gamma(C(G,f)) \le 2 \gamma(G). We investigate for graphs generally, and for cycles in great detail, the functions which achieve the upper and lower bounds, as well as the realization of the intermediate values.Comment: 18 pages, 8 figure

    Locating-Domination in Complementary Prisms.

    Get PDF
    Let G = (V (G), E(G)) be a graph and G̅ be the complement of G. The complementary prism of G, denoted GG̅, is the graph formed from the disjoint union of G and G̅ by adding the edges of a perfect matching between the corresponding vertices of G and G̅. A set D ⊆ V (G) is a locating-dominating set of G if for every u ∈ V (G)D, its neighborhood N(u)⋂D is nonempty and distinct from N(v)⋂D for all v ∈ V (G)D where v ≠ u. The locating-domination number of G is the minimum cardinality of a locating-dominating set of G. In this thesis, we study the locating-domination number of complementary prisms. We determine the locating-domination number of GG̅ for specific graphs and characterize the complementary prisms with small locating-domination numbers. We also present bounds on the locating-domination numbers of complementary prisms

    Roman Domination in Complementary Prisms

    Get PDF
    The complementary prism GG of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect match- ing between the corresponding vertices of G and G. A Roman dominating function on a graph G = (V,E) is a labeling f : V(G) → {0,1,2} such that every vertex with label 0 is adjacent to a vertex with label 2. The Roman domination number γR(G) of G is the minimum f(V ) = Σv∈V f(v) over all such functions of G. We study the Roman domination number of complementary prisms. Our main results show that γR(GG) takes on a limited number of values in terms of the domination number of GG and the Roman domination numbers of G and G

    Global Domination Stable Graphs

    Get PDF
    A set of vertices S in a graph G is a global dominating set (GDS) of G if S is a dominating set for both G and its complement G. The minimum cardinality of a global dominating set of G is the global domination number of G. We explore the effects of graph modifications on the global domination number. In particular, we explore edge removal, edge addition, and vertex removal
    • …
    corecore