3,459 research outputs found

    Nambu representation of an extended Lorenz model with viscous heating

    Get PDF
    We consider the Nambu and Hamiltonian representations of Rayleigh-Benard convection with a nonlinear thermal heating effect proportional to the Eckert number (Ec). The model we use is an extension of the classical Lorenz-63 model with 4 kinematic and 6 thermal degrees of freedom. The conservative parts of the dynamical equations which include all nonlinearities satisfy Liouville's theorem and permit a conserved Hamiltonian H for arbitrary Ec. For Ec=0 two independent conserved Casimir functions exist, one of these is associated with unavailable potential energy and is also present in the Lorenz-63 truncation. This Casimir C is used to construct a Nambu representation of the conserved part of the dynamical system. The thermal heating effect can be represented either by a second canonical Hamiltonian or as a gradient (metric) system using the time derivative of the Casimir. The results demonstrate the impact of viscous heating in the total energy budget and in the Lorenz energy cycle for kinetic and available potential energy.Comment: 15 pages, no figur

    Geometric Scattering in Robotic Telemanipulation

    Get PDF
    In this paper, we study the interconnection of two robots, which are modeled as port-controlled Hamiltonian systems through a transmission line with time delay. There will be no analysis of the time delay, but its presence justifies the use of scattering variables to preserve passivity. The contributions of the paper are twofold: first, a geometrical, multidimensional, power-consistent exposition of telemanipulation of intrinsically passive controlled physical systems, with a clarification on impedance matching, and second, a system theoretic condition for the adaptation of a general port-controlled Hamiltonian system with dissipation (port-Hamiltonian system) to a transmission line

    Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem

    Get PDF
    We develop a method for the stabilization of mechanical systems with symmetry based on the technique of controlled Lagrangians. The procedure involves making structured modifications to the Lagrangian for the uncontrolled system, thereby constructing the controlled Lagrangian. The Euler-Lagrange equations derived from the controlled Lagrangian describe the closed-loop system, where new terms in these equations are identified with control forces. Since the controlled system is Lagrangian by construction, energy methods can be used to find control gains that yield closed-loop stability. We use kinetic shaping to preserve symmetry and only stabilize systems module the symmetry group. The procedure is demonstrated for several underactuated balance problems, including the stabilization of an inverted planar pendulum on a cart moving on a line and an inverted spherical pendulum on a cart moving in the plane

    An Exponential Quantum Projection Filter for Open Quantum Systems

    Full text link
    An approximate exponential quantum projection filtering scheme is developed for a class of open quantum systems described by Hudson- Parthasarathy quantum stochastic differential equations, aiming to reduce the computational burden associated with online calculation of the quantum filter. By using a differential geometric approach, the quantum trajectory is constrained in a finite-dimensional differentiable manifold consisting of an unnormalized exponential family of quantum density operators, and an exponential quantum projection filter is then formulated as a number of stochastic differential equations satisfied by the finite-dimensional coordinate system of this manifold. A convenient design of the differentiable manifold is also presented through reduction of the local approximation errors, which yields a simplification of the quantum projection filter equations. It is shown that the computational cost can be significantly reduced by using the quantum projection filter instead of the quantum filter. It is also shown that when the quantum projection filtering approach is applied to a class of open quantum systems that asymptotically converge to a pure state, the input-to-state stability of the corresponding exponential quantum projection filter can be established. Simulation results from an atomic ensemble system example are provided to illustrate the performance of the projection filtering scheme. It is expected that the proposed approach can be used in developing more efficient quantum control methods
    • …
    corecore