223,270 research outputs found
Nano-scale displacement sensing based on Van der Waals interaction
We propose the nano-scale displacement sensor with high resolution for
weak-force systems could be realized based on vertical stacked two-dimensional
(2D) atomic corrugated layer materials bound through Van der Waals (VdW)
interaction. Using first-principles calculations, we found the electronic
structure of bi-layer blue phosphorus (BLBP) varies appreciably to both the
lateral and vertical interlayer displacement. The variation of electronic
structure due to the lateral displacement is attributed to the changing of the
interlayer distance dz led by atomic layer corrugation, which is in a uniform
picture with vertical displacement. Despite different stacking configurations,
the change of in-direct band gap is proportional to dz-2. This stacking
configuration independent dz-2 law is found also works for other graphene-like
corrugated bi-layer materials, for example MoS2. By measuring the tunable
electronic structure using absorption spectroscopy, the nano-scale displacement
could be detected. BLBP represents a large family of bi-layer 2D atomic
corrugated materials for which the electronic structure is sensitive to the
interlayer vertical and lateral displacement, thus could be used for nano-scale
displacement sensor. Since this kind of sensor is established on atomic layers
coupled through VdW interaction, it provides unique applications in
measurements of nano-scale displacement induced by tiny external force
A fibre optic sensor for the measurement of surface roughness and displacement using artificial neural networks
This paper presents a fiber optic sensor system, artificial neural networks (fast back-propagation) are employed for the data processing. The use of the neural networks makes it possible for the sensor to be used both for surface roughness and displacement measurement at the same time. The results indicate 100% correct surface classification for ten different surfaces (different materials, different manufacturing methods, and different surface roughnesses) and displacement errors less then ±5 μm. The actual accuracy was restricted by the calibration machine. A measuring range of ±0.8 mm for the displacement measurement was achieved
A high stability optical shadow sensor with applications for precision accelerometers
Displacement sensors are found in a variety of applications including gravitational wave detectors, precision metrology, tissue imaging, gravimeters, microscopy, and environmental monitoring. Most of these applications benefit from the use of displacement sensors that offer both high precision and stability. This is particularly the case for gravimetry where measurements are often taken over multi-day timescales. In this paper we describe a custom-built microcontroller-based displacement sensor that has been utilized in a micro-electromechanicalsystem gravimeter. The system runs off battery power and is low-cost, portable, and lightweight. Using an optical shadow sensor technique, and by designing a digital lock-in amplier based around a dsPIC33 microcontroller, we demonstrate a displacement sensitivity of 10 nm/Hz down to 300 s, and an rms sensitivity of 1 nm over timescales of one day. The system also provides real time monitoring/control of temperature, using an AD7195 ratiometric bridge to provide mK control of three separate PT100 sensors. Furthermore, a tilt sensor conditioning circuit is incorporated to drive a pair of electrolytic tilt sensors, resulting in the ability to monitor 2 axis tilt at the level of 1 microradian over approximately 1 day. The sensor system described is thus multifunctional and capable of being incorporated into precision accelerometers/gravimeters, or indeed other applications where long term displacement/temperature monitoring is necessary
Single-mask thermal displacement sensor in MEMS
In this work we describe a one degree-of-freedom microelectromechanical thermal\ud
displacement sensor integrated with an actuated stage. The system was fabricated in the device layer of a silicon-on-insulator wafer using a single-mask process. The sensor is based on the temperature dependent electrical resistivity of silicon and the heat transfer by conduction through a thin layer of air. On a measurement range of 50 μm and using a measurement bandwidth of 30 Hz, the 1-sigma noise corresponds to 3.47 nm. The power consumption of the sensor is 209 mW, almost completely independent of stage position. The drift of the sensor over a measurement period of 32 hours was 32 nm
A Fiber Optical Sensor For Non-Contact Vibration Measurements
This paper describes an intensity based optical sensor for the evaluation of accelerations from non-contact displacement measurements. Plastic optical fibers are used to collect the reflected light from several points on the vibrating surface, allowing the reconstruction of the vibration distribution. Two compensation techniques to reduce systematic effects due to the target reflectivity are also described and compared: one is based on the spectral analysis of the received optical signal and the other takes advantage of a reference displacement sensor. Experimental results in real conditions during vibration tests have demonstrated the capability to measure sub-micrometer vibration amplitudes up to about 40 kH
Transducer senses displacements of panels subjected to vibration
Inductive vibration sensor measures the surface displacement of nonferrous metal panels subjected to vibration or flutter. This transducer does not make any physical contact with the test panel when measuring
Optimized estimator for real-time dynamic displacement measurement using accelerometers
This paper presents a method for optimizing the performance of a real-time, long term, and accurate accelerometer based displacement measurement technique, with no physical reference point. The technique was applied in a system for measuring machine frame displacement.
The optimizer has three objectives with the aim to minimize phase delay, gain error and sensor noise. A multi-objective genetic algorithm was used to find Pareto optimal estimator parameters.
The estimator is a combination of a high pass filter and a double integrator. In order to reduce the gain and phase errors two approaches have been used: zero placement and pole-zero placement. These approaches were analysed based on noise measurement at 0g-motion and compared. Only the pole-zero placement approach met the requirements for phase delay, gain error, and sensor noise.
Two validation experiments were carried out with a Pareto optimal estimator. First, long term measurements at 0g-motion with the experimental setup were carried out, which showed displacement error of 27.6 ± 2.3 nm. Second, comparisons between the estimated and laser interferometer displacement measurements of the vibrating frame were conducted. The results showed a discrepancy lower than 2 dB at the required bandwidth
KWISP: an ultra-sensitive force sensor for the Dark Energy sector
An ultra-sensitive opto-mechanical force sensor has been built and tested in
the optics laboratory at INFN Trieste. Its application to experiments in the
Dark Energy sector, such as those for Chameleon-type WISPs, is particularly
attractive, as it enables a search for their direct coupling to matter. We
present here the main characteristics and the absolute force calibration of the
KWISP (Kinetic WISP detection) sensor. It is based on a thin Si3N4
micro-membrane placed inside a Fabry-Perot optical cavity. By monitoring the
cavity characteristic frequencies it is possible to detect the tiny membrane
displacements caused by an applied force. Far from the mechanical resonant
frequency of the membrane, the measured force sensitivity is 5.0e-14
N/sqrt(Hz), corresponding to a displacement sensitivity of 2.5e-15 m/sqrt(Hz),
while near resonance the sensitivity is 1.5e-14 N/sqrt(Hz), reaching the
estimated thermal limit, or, in terms of displacement, 7.5e-16 N/sqrt(Hz).
These displacement sensitivities are comparable to those that can be achieved
by large interferometric gravitational wave detectors.Comment: 9 pages, 8 figures in colo
- …
