84 research outputs found

    Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws

    Get PDF
    We consider two physically and mathematically distinct regularization mechanisms of scalar hyperbolic conservation laws. When the flux is convex, the combination of diffusion and dispersion are known to give rise to monotonic and oscillatory traveling waves that approximate shock waves. The zero-diffusion limits of these traveling waves are dynamically expanding dispersive shock waves (DSWs). A richer set of wave solutions can be found when the flux is non-convex. This review compares the structure of solutions of Riemann problems for a conservation law with non-convex, cubic flux regularized by two different mechanisms: 1) dispersion in the modified Korteweg--de Vries (mKdV) equation; and 2) a combination of diffusion and dispersion in the mKdV-Burgers equation. In the first case, the possible dynamics involve two qualitatively different types of DSWs, rarefaction waves (RWs) and kinks (monotonic fronts). In the second case, in addition to RWs, there are traveling wave solutions approximating both classical (Lax) and non-classical (undercompressive) shock waves. Despite the singular nature of the zero-diffusion limit and rather differing analytical approaches employed in the descriptions of dispersive and diffusive-dispersive regularization, the resulting comparison of the two cases reveals a number of striking parallels. In contrast to the case of convex flux, the mKdVB to mKdV mapping is not one-to-one. The mKdV kink solution is identified as an undercompressive DSW. Other prominent features, such as shock-rarefactions, also find their purely dispersive counterparts involving special contact DSWs, which exhibit features analogous to contact discontinuities. This review describes an important link between two major areas of applied mathematics, hyperbolic conservation laws and nonlinear dispersive waves.Comment: Revision from v2; 57 pages, 19 figure

    Expansion shock waves in regularised shallow water theory

    Get PDF
    We identify a new type of shock wave by constructing a stationary expansion shock solution of a class of regularised shallow water equations that include the Benjamin-Bona-Mahoney (BBM) and Boussinesq equations. An expansion shock exhibits divergent characteristics, thereby contravening the classical Lax entropy condition. The persistence of the expansion shock in initial value problems is analysed and justified using matched asymptotic expansions and numerical simulations. The expansion shock’s existence is traced to the presence of a non-local dispersive term in the governing equation. We establish the algebraic decay of the shock as it is gradually eroded by a simple wave on either side. More generally, we observe a robustness of the expansion shock in the presence of weak dissipation and in simulations of asymmetric initial conditions where a train of solitary waves is shed from one side of the shock

    Capturing nonclassical shocks in nonlinear elastodynamic with a conservative finite volume scheme

    Full text link
    For a model of nonlinear elastodynamics, we construct a finite volume scheme which is able to capture nonclassical shocks (also called undercompressive shocks). Those shocks verify an entropy inequality but are not admissible in the sense of Liu. They verify a kinetic relation which describes the jump, and keeps an information on the equilibrium between a vanishing dispersion and a vanishing diffusion. The scheme pre-sented here is by construction exact when the initial data is an isolated nonclassical shock. In general, it does not introduce any diffusion near shocks, and hence nonclas-sical solutions are correctly approximated. The method is fully conservative and does not use any shock-tracking mesh. This approach is tested and validated on several test cases. In particular, as the nonclassical shocks are not diffused at all, it is possible to obtain large time asymptotics

    Stationary expansion shocks for a regularized Boussinesq system

    Get PDF
    Stationary expansion shocks have been recently identified as a new type of solution to hyperbolic conservation laws regularized by non-local dispersive terms that naturally arise in shallow-water theory. These expansion shocks were studied in [1] for the Benjamin-Bona-Mahony equation using matched asymptotic expansions. In this paper, we extend the analysis of [1] to the regularized Boussinesq system by using Riemann invariants of the underlying dispersionless shallow water equations. The extension for a system is non-trivial, requiring a combination of small amplitude, long-wave expansions with high order matched asymptotics. The constructed asymptotic solution is shown to be in excellent agreement with accurate numerical simulations of the Boussinesq system for a range of appropriately smoothed Riemann data

    Convergent and conservative schemes for nonclassical solutions based on kinetic relations

    Full text link
    We propose a new numerical approach to compute nonclassical solutions to hyperbolic conservation laws. The class of finite difference schemes presented here is fully conservative and keep nonclassical shock waves as sharp interfaces, contrary to standard finite difference schemes. The main challenge is to achieve, at the discretization level, a consistency property with respect to a prescribed kinetic relation. The latter is required for the selection of physically meaningful nonclassical shocks. Our method is based on a reconstruction technique performed in each computational cell that may contain a nonclassical shock. To validate this approach, we establish several consistency and stability properties, and we perform careful numerical experiments. The convergence of the algorithm toward the physically meaningful solutions selected by a kinetic relation is demonstrated numerically for several test cases, including concave-convex as well as convex-concave flux-functions.Comment: 31 page
    corecore