4 research outputs found

    Polar codes and polar lattices for independent fading channels

    Get PDF
    In this paper, we design polar codes and polar lattices for i.i.d. fading channels when the channel state information is only available to the receiver. For the binary input case, we propose a new design of polar codes through single-stage polarization to achieve the ergodic capacity. For the non-binary input case, polar codes are further extended to polar lattices to achieve the egodic Poltyrev capacity, i.e., the capacity without power limit. When the power constraint is taken into consideration, we show that polar lattices with lattice Gaussian shaping achieve the egodic capacity of fading channels. The coding and shaping are both explicit, and the overall complexity of encoding and decoding is O(N log2 N)

    Polar Codes and Polar Lattices for Independent Fading Channels

    Get PDF
    Abstract-In this paper, we design polar codes and polar lattices for i.i.d. fading channels when the channel state information is only available to receiver. For the binary input case, we show that one single polar code is sufficient to achieve the ergodic capacity. For the non-binary input case, polar codes are further extended to polar lattices to achieve the egodic Poltyrev capacity, i.e., the capacity without power limit. When the power constraint is taken into consideration, we show that polar lattices with lattice Gaussian shaping are able to achieve the egodic capacity of fading channels. The coding and shaping are both explicit, and our scheme works under any signal noise ratio. The overall complexity of encoding and decoding is O(N log 2 N )

    Polar Codes and Polar Lattices for Independent Fading Channels

    Get PDF
    Abstract In this paper, we design polar codes and polar lattices for i.i.d. fading channels when the channel state information is only available to the receiver. For the binary input case, we propose a new design of polar codes through single-stage polarization to achieve the ergodic capacity. For the non-binary input case, polar codes are further extended to polar lattices to achieve the egodic Poltyrev capacity, i.e., the capacity without power limit. When the power constraint is taken into consideration, we show that polar lattices with lattice Gaussian shaping achieve the egodic capacity of fading channels. The coding and shaping are both explicit, and the overall complexity of encoding and decoding is O(N log 2 N )
    corecore