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Abstract—In this paper, we design polar codes and polar
lattices for i.i.d. fading channels when the channel state infor-
mation is only available to receiver. For the binary input case,
we show that one single polar code is sufficient to achieve the
ergodic capacity. For the non-binary input case, polar codes are
further extended to polar lattices to achieve the egodic Poltyrev
capacity, i.e., the capacity without power limit. When the power
constraint is taken into consideration, we show that polar lattices
with lattice Gaussian shaping are able to achieve the egodic
capacity of fading channels. The coding and shaping are both
explicit, and our scheme works under any signal noise ratio. The
overall complexity of encoding and decoding is O(N log2 N).

I. INTRODUCTION

Real-world wireless channels are generally modeled as
time-varying fading channels due to multiple signal paths and
user mobility. Compared with time-invariant channel models,
the wireless fading channel models allow the channel gain to
change randomly over time. In practice, we usually consider
block fading channel models, where channel gain varies at
a longer time scale than symbol transmission time. In this
paper we study the fast block fading channel with stationary
ergodic channel gains. By assuming a perfect interleaving/de-
interleaving on symbols, the channel can be considered to
be memoryless, which offers much convenience for coding
design. We further assume that channel state information (CSI)
is available to receiver, and the transmitter only has the channel
distribution information (CDI).

Polar codes, introduced by Arıkan [1], are capacity achiev-
ing for binary-input memoryless symmetric channels (BM-
SCs). Besides channel coding, polar codes were then extended
to source coding and their asymptotic performance was proved
to be optimal [2]. As a combination of the application of
polar codes for channel coding and lossless source coding,
polar codes were further studied to achieve the capacity
of binary-input memoryless asymmetric channels (BMACs)
in [3]. For fading channels, there has been some previous
work. A hierarchic polar coding scheme, approximating fading
channels as a mixture of binary symmetric channels (BSCs)
with different crossover probabilities, was proposed in [4].
The ergodic capacity is achieved through two phases of
polarization. The first phase is to get each BSC polarized into a
set of extremal subchannels, which is treated as a set of binary
erasure channels (BECs). The second phase of polarization to
get each BEC polarized. As a result, much longer block length

than the standard polar codes is needed. Quasi-static fading
channel with two states was discussed in [5]. Construction of
polar codes for block Rayleigh fading channels when CSI or
CDI is available for both transmitter and receiver is considered
in [6]. In this work, however, we consider the case in which
CSI is available to receiver, and transmitter only knows CDI.
We show that the same channel capacity can be achieved as
CSI is available to both, and the construction of polar codes
is simplified.

As the counterpart of linear codes in the Euclidean space,
lattice codes provide more freedom over signal constellation
for communication systems. The existence of lattice codes
achieving the additive white Gaussian noise (AWGN) channel
capacity was established using the random coding argument
[7]. Besides point-to-point communications, lattice codes are
also useful in a wide range of applications in multiterminal
communications (see [8] for an overview). Following the work
on multilevel coset codes [9], polar lattices were constructed
from polar codes according to “Construction D” [10] and
proved to be AWGN-good [11]. With lattice Gaussian shaping
[12], polar lattices were then shown to be capable of achieving
the AWGN capacity [13]. More recently, lattice codes were
investigated in ergodic fading channels [14] and proved to be
capacity-achieving under the ambiguity decoding. However,
the construction of such lattice codes for ergodic fading
channels is still implicit. In this work, we will resolve this
problem using polar lattices for the i.i.d. fading case.

Algebraic tools [15] play an important role in explicit lattice
coding design for fading channles. It was shown that lattice
codes constructed from algebraic number field can achieve
full diversity over fading channels, which results in better
error probability performance. A more recent work showed
that number field lattices are able to achieve Gaussian and
Rayleigh channel capacity within a constant gap [16]. It is
still an open question whether this gap can be removed.

The paper is organized as follows: Section II presents the
background of polar codes and polar lattices. The construction
of polar codes for binary-input ergodic fading channels is
investigated in Section III. In Section IV, we design polar
lattices for fading channels without power constraint and
prove that ergodic Poltyrev capacity can be achieved. Lattice
Gaussian shaping is then implemented to obtain the optimum
shaping gain. Finally, the paper is concluded in Section VI.



All random variables (RVs) are denoted by capital letters.
Let PX denote the probability distribution of a RV X taking
values x in a set X . The i-th realization of X is denoted by
xi. We also use the notation xi:j as a shorthand for a vector
(xi, ..., xj), which is a realization of RVs Xi:j = (Xi, ..., Xj).
For a set I, Ic denotes its complement. We denote N inde-
pendent uses of channel W by WN . By channel combining
and splitting, we get the combined channel WN and the i-th
subchannel W (i)

N . The binary logarithm and natural logarithm
are accordingly denoted by log and ln, and information is
measured in bits.

II. PRELIMINARIES OF POLAR CODES AND POLAR
LATTICES

A. Polar Codes

Let W̃ be a BMSC with input alphabet X ∈ {0, 1} and
output alphabet Y . Given the capacity C(W̃ ) of W̃ and the
rate R < C(W̃ ), the information bits of a polar code with
block length N = 2m are indexed by a set of ⌊RN⌋ rows
of the generator matrix GN = [ 1 0

1 1 ]
⊗m, where ⊗ denotes

the Kronecker product. The matrix GN combines N identical
copies of W̃ to W̃N . Then this combination can be succes-
sively split into N binary memoryless symmetric subchannels,
denoted by W̃

(i)
N with 1 ≤ i ≤ N . By channel polarization,

the fraction of good (roughly error-free) subchannels is about
C(W̃ ) as m → ∞. Therefore, to achieve the capacity, infor-
mation bits are sent over those good subchannels and the rest
are fed with frozen bits which are known before transmission.
The indices of good subchannels can be identified according
to their associated Bhattacharyya Parameters.

Definition 1. Given a BMSC W̃ with transition probability
PY |X , the Bhattacharyya parameter of W̃ is defined as

Z̃(W̃ ) ,
∑
y

√
PY |X(y|0)PY |X(y|1). (1)

Based on the Bhattacharyya parameter, the information set
Ĩ is defined as {i : Z̃(W̃ (i)

N ) ≤ 2−Nβ} for some 0 < β < 1
2 ,

and the frozen set F̃ = Ĩc. Let PB denote the block error
probability of a polar code under successive cancellation (SC)
decoding. It can be upper-bounded as PB ≤ Σi∈ĨZ̃(W̃

(i)
N ). An

efficient algorithm to evaluate the Bhattacharyya parameter of
subchannels for general BMSCs was presented in [17].

B. Lattice Codes and Polar Lattices

An n-dimensional lattice is a discrete subgroup of Rn which
can be described by

Λ = {λ = Bz : z ∈ Zn}, (2)

where the columns of the generator matrix B = [b1, · · · ,bn]
are assumed to be linearly independent.

For a vector x ∈ Rn, the nearest-neighbor quantizer associ-
ated with Λ is QΛ(x) = argmin

λ∈Λ
∥λ−x∥. We define the modulo

lattice operation by x mod Λ , x − QΛ(x). The Voronoi
region of Λ, defined by V(Λ) = {x : QΛ(x) = 0}, specifies
the nearest-neighbor decoding region. The Voronoi cell is one

example of fundamental region of the lattice. A measurable
set R(Λ) ⊂ Rn is a fundamental region of the lattice Λ if
∪λ∈Λ(R(Λ)+λ) = Rn and if (R(Λ)+λ)∩ (R(Λ)+λ′) has
measure 0 for any λ ̸= λ′ in Λ. The volume of a fundamental
region is equal to that of the Voronoi region V(Λ), which is
given by V (Λ) = |det(B)|.

For an n-dimensional lattice Λ, define the volume-to-noise
ratio (VNR) by

γΛ(σ) , V (Λ)
2
n /σ2. (3)

For σ > 0 and c ∈ Rn, we define the Gaussian distribution
of variance σ2 centered at c as

fσ,c(x) =
1

(
√
2πσ)n

e−
∥x−c∥2

2σ2 , x ∈ Rn. (4)

Let fσ,0(x) = fσ(x) for short. For an AWGN channel
with noise variance σ2 per dimension, the probability of error
Pe(Λ, σ

2) of a minimum-distance decoder for Λ is

Pe(Λ, σ
2) = 1−

∫
V(Λ)

fσ(x)dx. (5)

The Λ-periodic function is defined as

fσ,Λ(x) =
∑
λ∈Λ

fσ,λ(x) =
1

(
√
2πσ)n

∑
λ∈Λ

e−
∥x−λ∥2

2σ2 . (6)

We note that fσ,Λ(x) is a probability density function (PDF)
if x is restricted to the fundamental region R(Λ). This
distribution is actually the PDF of the Λ-aliased Gaussian
noise, i.e., the Gaussian noise after the mod-Λ operation [9].

A sublattice Λ′ ⊂ Λ induces a partition (denoted by
Λ/Λ′) of Λ into equivalence groups modulo Λ′. The order
of the partition, denoted by |Λ/Λ′|, is equal to the number
of the cosets. If |Λ/Λ′| = 2, we call this a binary parti-
tion. Let Λ(Λ0)/Λ1/ · · · /Λr−1/Λ

′(Λr) for r > 1 be an n-
dimensional lattice partition chain. The construction is known
as “Construction D” [10, p.232]. For each partition Λℓ−1/Λℓ

(1 ≤ ℓ ≤ r) a code Cℓ over Λℓ−1/Λℓ selects a sequence
of coset representatives aℓ in a set Aℓ of representatives for
the cosets of Λℓ. This construction requires a set of nested
linear binary codes Cℓ with block length N and dimension
of information bits kℓ. Let ψ be the natural embedding of FN

2

into ZN , where F2 is the binary field. Consider g1, g2, · · · , gN
be a basis of FN

2 such that g1, · · · gkℓ
span Cℓ. When n = 1,

the binary lattice L consists of all vectors of the form
r∑

ℓ=1

2ℓ−1
kℓ∑
j=1

α
(ℓ)
j ψ(gj) + 2rz, (7)

where α
(ℓ)
j ∈ {0, 1} and z ∈ ZN . When {C1, ..., Cr} is a

series of nested polar codes, we obtain a polar lattice.

III. POLAR CODES FOR BINARY-INPUT FADING CHANNELS

Consider the binary-input i.i.d. ergodic fading channel

Y = HX + Z, (8)

where X ∈ {−1,+1} is the binary signal after BPSK
modulation, Y is the channel output, Z is a zero mean



independent Gaussian noise with variance σ2, and H is the
channel gain. For convenience, we assume that H follows
Rayleigh distribution with probability density function (PDF)

PH(h) =
h

σ2
h

e
− h2

2σ2
h , (9)

where σh =
√

2
π · E[H]. Note that our work can be easily

generalized to other regular fading distributions [18].
Since we assume that H is available to the receiver, the

fading channel can be modeled as a channel with input X and
outputs (Y,H), as shown in Fig. 1.

X Y 

H Z 

H 

Fig. 1. Binary-input ergodic fading channel with CSI available to receiver.

The channel transition PDF of W̃ is given by

PY,H|X(y, h|x) = PH(h)PY |X,H(y|x, h)

= PH(h)
1√
2πσ2

e−
(y−xh)2

2σ2 .
(10)

We define a permutation ϕ over the outputs (y, h) such
that ϕ(y, h) = (−y, h). Check that PY,H|X(y, h| + 1) =

PY,H|X(ϕ(y, h)| − 1) and hence W̃ is symmetric. It is well-
known that uniform input distribution achieves the capacity of
symmetric channels. Therefore, let X be uniform, the capacity
of W̃ is given by

C(W̃ ) = I(X;Y,H) = I(X;Y |H)

= 1− 1√
2πσσ2

h

∫ ∞

0

he
− h2

2σ2
h dh·∫ ∞

−∞

(
1− log(1 + e−

2yh

σ2 )
)
dy,

(11)

which is the same as the capacity when CSI is avaliable to
both transmitter and receiver [6].

To achieve C(W̃ ), we combine N independent copies
of W̃ to W̃N and split it to obtain subchannel W̃ (i)

N for
1 ≤ i ≤ N . Let U1:N = X1:NGN , W̃ (i)

N has input U i and
outputs (U1:i−1, Y 1:N ,H1:N ). Since W̃ is symmetric, W̃ (i)

N is
symmetric as well [1]. We can identify the information set I
according to the Bhattacharyya parameter Z̃(W̃ (i)

N ). Treating
(Y,H) as the outputs, by Definition 1,

Z̃(W̃ ) =
∑
y,h

√
PY,H|X(y, h|+ 1)PY,H|X(y, h| − 1). (12)

For general BMSCs, we can apply the degrading and upgrad-
ing merging algorithms [17], [19] to estimate Z̃(W̃ (i)

N ) within
acceptable accuracy.

In practice, the two approximations caused by the degrading
and upgrading processes are typically close. Therefore, we
focus on the degrading transform for brevity.

Define the likelihood ratio (LR) of (y, h) as

LR(y, h) ,
PY,H|X(y, h|+ 1)

PY,H|X(y, h| − 1)
. (13)

By (10), we have LR(y, h) = e
2yh

σ2 for the fading case.
Clearly, LR(y, h) ≥ 1 for any y ≥ 0. Each LR(y, h)
corresponds to a BSC with crossover probability 1

LR(y,h)+1
and its capacity is

C[LR(y, h)] = 1− h2
( 1

LR(y, h) + 1

)
, (14)

where h2(·) is the binary entropy function.
The fading channel W̃ is then quantized according to

C[LR(y, h)]. Let µ = 2Q be the size of degraded channel
output alphabet. The region {y ≥ 0, h ≥ 0} is divided into Q
sets

Ai =

{
y ≥ 0, h ≥ 0 :

i− 1

Q
≤ C[LR(y, h)] <

i

Q

}
, (15)

for 1 ≤ i ≤ L. The outputs in Ai are mapped to one symbol,
and W̃ is quantized to a mixture of Q BSCs with the crossover
probability

pi =

∫
Ai
PY,H|X(y, h| − 1)dydh∑

x={−1,+1}
∫
Ai
PY,H|X(y, h|x)dydh

. (16)

Note that pi can be numerically evaluated. See [20] for more
details. Let W̃Q denote the quantized channel from W̃ after
the degrading transform. By [17, Lemma 13], the difference
between the two channel capacities is upper-bounded by 1

Q .
When Q is sufficiently large, we can use W̃Q to approximate
W̃ to construct polar codes. The size of the subchannel output
alphabet after degrading merging is no more than 2Q.

The proof of the following theorem is standard and fully
given in [17]. We omit it for brevity.

Theorem 1. Let W̃ : X → (Y,H) be a binary-input ergodic
fading channel. Let N denote the block length and µ = 2Q
denote the limit of the size of output alphabet. A polar code
constructed by the degrading merging algorithm achieves the
capacity C(W̃ ) when N and µ are both sufficiently large. The
block error probability under SC decoding is unpper-bounded
by N2−Nβ

for 0 < β < 1
2 .

Simulation results of polar codes with different block length
for binary Rayleigh fading channels in shown in Fig. 2, where
σh = 1.2575, σ = 1 (σ2

h/σ
2 = 5 dB), and C(W̃ ) = 0.671.

IV. POLAR LATTICES FOR GAUSSIAN FADING CHANNELS

In this part, we extend polar codes to polar lattices for
ergodic fading channels. The reason for this extension is that
the input of fading channels is not necessarily limited to be
binary. In general, input X is subject to a power constraint
P , i.e., E[∥X∥2] ≤ P . In this case, lattice codes offer more
choices of input constellation. Our work follows a similar idea
of [13]. We firstly construct polar lattices which achieve the
Poltyrev capacity of egodic fading channels and then perform
lattice Gaussian shaping to achieve the ergodic capacity.
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Fig. 2. Performance of polar codes for Rayleigh fading channel when N =
210, 211, ..., 214.

A. The Mod Λ channel and Λ/Λ′ channel [9]

A mod-Λ Gaussian channel is a Gaussian channel with an
input in V(Λ) and with a mod-V(Λ) operator at the receiver
front end. The capacity of the mod-Λ channel for noise
variance σ2 is

C(Λ, σ2) = log V (Λ)− h(Λ, σ2), (17)

where h(Λ, σ2) = −
∫
V(Λ)

fσ,Λ(x) log fσ,Λ(x)dx is the dif-
ferential entropy of the Λ-aliased noise over V(Λ).

For a lattice partition Λ/Λ′, the Λ/Λ′ channel is a mod-Λ′

channel whose input is restricted to discrete lattice points in
(Λ + a) ∩ R(Λ′) for some translate a. The capacity of the
Λ/Λ′ channel is given by [9]

C(Λ/Λ′, σ2) = C(Λ′, σ2)− C(Λ, σ2)

= h(Λ, σ2)− h(Λ′, σ2) + log
(
V (Λ′)/V (Λ)

)
.

(18)

As we mentioned, we use the “Construction D” method
to construct polar lattices. Let Λ/Λ1/ · · · /Λr−1/Λ

′ be an
n-dimensional self-similar lattice partition chain. For each
partition Λℓ−1/Λℓ a code over Λℓ−1/Λℓ selects a sequence
of representatives aℓ for the cosets of Λℓ. If each partition is
a binary partition, the codes Cℓ are binary codes. Moreover,
based on this partition chain, the capacity C(Λ/Λ′, σ2) can
also be expanded as

C(Λ/Λ′, σ2) = C(Λ/Λ1, σ
2) + · · ·+ C(Λr−1/Λ

′, σ2). (19)

In order to approach the Poltyrev capacity of AWGN
channels, for a polar lattice L, we would like to have γL(σ) →
2πe while Pe(L, σ

2) → 0. According to the analysis in [9], we
need a negligible capacity C(Λ, σ2), a small error probability
Pe(Λ

′, σ2), and a capacity-approaching polar code for each
Λℓ−1/Λℓ partition channel.

B. Polar Lattices for Fading Channels without Power Limit

For the ergodic fading channels, the channel gain varies. The
above analysis for time-unvarying AWGN channels need to be
generalized. Since receiver knows the CSI, the fading effect
can be removed by multiplying Y with 1

H at the receiver’s
end. We define the fading mod-Λ channel as follows.

! "

# $

#

 
 

"
!"#$! "

!

#

Fig. 3. A block diagram of the fading mod-Λ channel.

Definition 2. A fading mod-Λ channel is a Gaussian fading
channel with an input in V(Λ), and an output being scaled by
1
H before the mod-V(Λ) operation. A block diagram of this
model is shown in Fig 3.

The fading mod-Λ channel is closely related to a mod-Λ
channel with noise variance σ2

h2 . The channel transition PDF
of the fading mod-Λ channel is given by

PỸ,H|X(ỹ, h|x) = PY,H|X(y = ỹh+ h · Λ, h|x)dy
dỹ

= h · PH(h)
∑
λ∈Λ

PY |X,H(y = ỹh+ λh|x, h)

= PH(h)
∑
λ∈Λ

1√
2π σ

h

e
− (ỹ+λ−x)2

2(σ
h

)2 ,

(20)

where the second term in the last equation is the channel
transition PDF of a mod-Λ channel with noise variance σ2

h2 .
Therefore, the fading mod-Λ channel can be viewed as an
independent combination of a Rayleigh distributed variable H
and a mod-Λ channel with noise variance σ2

H2 . The capacity
of the mod-Λ channel is

CH(Λ, σ2) = Eh

[
C
(
Λ,
σ2

h2
)]
. (21)

Similarly, A fading Λ/Λ′ channel is a fading mod-Λ′

channel whose input is restricted to discrete lattice points in
(Λ+ a)∩R(Λ′) for some translate a. It can be viewed as an
independent combination of a Rayleigh distributed variable H
and a Λ/Λ′ channel with noise variance σ2

H2 . The capacity of
the fading Λ/Λ′ channel is given by

CH(Λ/Λ′, σ2) = Eh

[
C
(
Λ′,

σ2

h2
)]

− Eh

[
C
(
Λ,
σ2

h2
)]
. (22)

Since the Λ/Λ′ channel is symmetric [9], it is easy to check
that the Λ/Λ′ fading channel is symmetric as well. Polar
lattices can be constructed to achieve the (ergodic) Poltyrev
capacity of the ergodic fading channel, as we did for the
AWGN channel. Recall that the Poltyrev capacity C∞ of a
general additive-noise channel is defined as the capacity per
unit volume in [8, Theorem 6.3.1]. For the independent AWGN
channels, it is given by −h(σ2), where h(σ2) denotes the
differential entropy of a Gaussian variable with variance σ2.

For the independent ergodic fading channels, C∞ is gener-
alized as [18]

C∞ = −Eh

[
h
(σ2

h2
)]

= Eh

[
1

2
log

( h2

2πσ2

)]
= −1

2
log

(
2πeσ2 · e

ζ

σ2
h

)
,

(23)



where ζ = −
∫∞
0
e−x lnxdx is the Euler-Mascheroni constant.

To approach the Poltyrev capacity C∞, we construct polar
lattices according to the following three design criteria:
(a) Λ gives negligible capacity Eh

[
C
(
Λ, σ

2

h2

)]
.

(b) Λ′ has a small error probability Eh

[
Pe

(
Λ′, σ

2

h2

)]
.

(c) Each component polar code Cℓ is a capacity-approaching
code for the Λℓ−1/Λℓ fading channel.

For criterion (a), we pick a top lattice Λ for a large channel
gain hr such that h

(
Λ, σ

2

h2
r

)
≈ log V (Λ). For criterion (b),

we pick a bottom lattice Λ′ for a small channel gain hl such
that Pe

(
Λ′, σ

2

h2
l

)
→ 0. For criterion (c), we choose a binary

partition chain and construct binary polar codes to achieve
the capacity of the Λℓ−1/Λℓ fading channel for 1 ≤ ℓ ≤ r.
Since the Λℓ−1/Λℓ fading channel is a BMSC, treating (Ỹ,H)
as the outputs, the construction method proposed in Sect. III
can be used. The constructed polar codes can be proved to be
sequentially nested. See [20] for more details.

Theorem 2. For an independent ergodic Rayleigh fading
channel with given σ2

h and σ2, select an n-dimensional binary
lattice partition chain Λ/Λ1/ · · · /Λr−1/Λ

′ such that both the
criterion (a) and (b) are satisfied. Construct a polar lattice L
from this partition chain and r nested polar codes with block
length N . For a fixed dimension n and some constant δ ≥ 1, L
can achieve the Poltyrev capacity of the ergodic fading chan-
nel, i.e., γL(σ) → 2πe · eζ

σ2
h

and Pe(L, σ
2) = O( 1

N2δ−1 ) → 0,
as r = O(nδ logN) and N → ∞.

Proof: See the proof of [20, Theorem 2].

C. Polar Lattices With Gaussian Shaping

When the CSI is only known to the receiver, for a given
power constraint E[∥X∥2] ≤ P , the optimal input distribution
for the ergodic fading channel is the continuous Gaussian
distribution with variance P [21], which is the same as that
for AWGN channels. Therefore, the lattice Gaussian shaping
technique proposed for the AWGN-good polar lattices in [13]
can be applied to the fading case with minor modification.

Let the input X be Gaussian distributed, the ergodic channel
capacity is given by [21]

I(X;Y,H) = Eh

[
1

2
log

(
1 +

Ph2

σ2

)]
, (24)

where 1
2 log(1 + Ph2

σ2 ) is the capacity of an AWGN channel
with noise variance σ2

h2 and power constraint P . Our strategy is
to pick a lattice Gaussian distribution which is able to achieve
the AWGN capacity for almost all possible h. We can choose
a large hr such that the lattice Gaussian distribution defined
over Λ achieves the capacity 1

2 log(1 +
Ph2

r

σ2 ), and finally the
ergodic capacity can be approached by this distribution. The
details of implementing the Gaussian shaping on polar lattices
are given in [20] and omitted here due to the limited space.

V. CONCLUSION

Explicit construction of polar codes and polar lattices for
ergodic fading channels is proposed in this paper. By treating

channel gain as a part of channel outputs, the work of
polar codes and polar lattices for time-unvarying channels is
generalized to the fading case. We prove that standard polar
codes are able to achieve the capacity of binary-input ergodic
fading channels, and polar lattices are able to achieve the
capacity with certain input constraint.
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