8 research outputs found

    Eigensolution analysis of spectral/hp continuous Galerkin approximations to advection-diffusion problems: insights into spectral vanishing viscosity

    Get PDF
    AbstractThis study addresses linear dispersion–diffusion analysis for the spectral/hp continuous Galerkin (CG) formulation in one dimension. First, numerical dispersion and diffusion curves are obtained for the advection–diffusion problem and the role of multiple eigencurves peculiar to spectral/hp methods is discussed. From the eigencurves' behaviour, we observe that CG might feature potentially undesirable non-smooth dispersion/diffusion characteristics for under-resolved simulations of problems strongly dominated by either convection or diffusion. Subsequently, the linear advection equation augmented with spectral vanishing viscosity (SVV) is analysed. Dispersion and diffusion characteristics of CG with SVV-based stabilization are verified to display similar non-smooth features in flow regions where convection is much stronger than dissipation or vice-versa, owing to a dependency of the standard SVV operator on a local PĂ©clet number. First a modification is proposed to the traditional SVV scaling that enforces a globally constant PĂ©clet number so as to avoid the previous issues. In addition, a new SVV kernel function is suggested and shown to provide a more regular behaviour for the eigencurves along with a consistent increase in resolution power for higher-order discretizations, as measured by the extent of the wavenumber range where numerical errors are negligible. The dissipation characteristics of CG with the SVV modifications suggested are then verified to be broadly equivalent to those obtained through upwinding in the discontinuous Galerkin (DG) scheme. Nevertheless, for the kernel function proposed, the full upwind DG scheme is found to have a slightly higher resolution power for the same dissipation levels. These results show that improved CG-SVV characteristics can be pursued via different kernel functions with the aid of optimization algorithms

    Final Report - High-Order Spectral Volume Method for the Navier-Stokes Equations On Unstructured Tetrahedral Grids

    Full text link
    The overriding objective for this project is to develop an efficient and accurate method for capturing strong discontinuities and fine smooth flow structures of disparate length scales with unstructured grids, and demonstrate its potentials for problems relevant to DOE. More specifically, we plan to achieve the following objectives: 1. Extend the SV method to three dimensions, and develop a fourth-order accurate SV scheme for tetrahedral grids. Optimize the SV partition by minimizing a form of the Lebesgue constant. Verify the order of accuracy using the scalar conservation laws with an analytical solution; 2. Extend the SV method to Navier-Stokes equations for the simulation of viscous flow problems. Two promising approaches to compute the viscous fluxes will be tested and analyzed; 3. Parallelize the 3D viscous SV flow solver using domain decomposition and message passing. Optimize the cache performance of the flow solver by designing data structures minimizing data access times; 4. Demonstrate the SV method with a wide range of flow problems including both discontinuities and complex smooth structures. The objectives remain the same as those outlines in the original proposal. We anticipate no technical obstacles in meeting these objectives

    Spatial eigensolution analysis of energy-stable flux reconstruction schemes and influence of the numerical flux on accuracy and robustness

    Get PDF
    This study focuses on the dispersion and diffusion characteristics of high-order energy-stable flux reconstruction (ESFR) schemes via the spatial eigensolution analysis framework proposed in [1]. The analysis is performed for five ESFR schemes, where the parameter ‘c’ dictating the properties of the specific scheme recovered is chosen such that it spans the entire class of ESFR methods, also referred to as VCJH schemes, proposed in [2]. In particular, we used five values of ‘c’, two that correspond to its lower and upper bounds and the others that identify three schemes that are linked to common high-order methods, namely the ESFR recovering two versions of discontinuous Galerkin methods and one recovering the spectral difference scheme. The performance of each scheme is assessed when using different numerical intercell fluxes (e.g. different levels of upwinding), ranging from “under-” to “over-upwinding”. In contrast to the more common temporal analysis, the spatial eigensolution analysis framework adopted here allows one to grasp crucial insights into the diffusion and dispersion properties of FR schemes for problems involving non-periodic boundary conditions, typically found in open-flow problems, including turbulence, unsteady aerodynamics and aeroacoustics

    A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations

    Get PDF
    This work focuses on the accuracy and stability of high-order nodal discontinuous Galerkin (DG) methods for under-resolved turbulence computations. In particular we consider the inviscid Taylor-Green vortex (TGV) flow to analyse the implicit large eddy simulation (iLES) capabilities of DG methods at very high Reynolds numbers. The governing equations are discretised in two ways in order to suppress aliasing errors introduced into the discrete variational forms due to the under-integration of non-linear terms. The first, more straightforward way relies on consistent/over-integration, where quadrature accuracy is improved by using a larger number of integration points, consistent with the degree of the non-linearities. The second strategy, originally applied in the high-order finite difference community, relies on a split (or skew-symmetric) form of the governing equations. Different split forms are available depending on how the variables in the non-linear terms are grouped. The desired split form is then built by averaging conservative and non-conservative forms of the governing equations, although conservativity of the DG scheme is fully preserved. A preliminary analysis based on Burgers’ turbulence in one spatial dimension is conducted and shows the potential of split forms in keeping the energy of higher-order polynomial modes close to the expected levels. This indicates that the favourable dealiasing properties observed from split-form approaches in more classical schemes seem to hold for DG. The remainder of the study considers a comprehensive set of (under-resolved) computations of the inviscid TGV flow and compares the accuracy and robustness of consistent/over-integration and split form discretisations based on the local Lax-Friedrichs and Roe-type Riemann solvers. Recent works showed that relevant split forms can stabilize higher-order inviscid TGV test cases otherwise unstable even with consistent integration. Here we show that stable high-order cases achievable with both strategies have comparable accuracy, further supporting the good dealiasing properties of split form DG. The higher-order cases achieved only with split form schemes also displayed all the main features expected from consistent/over-integration. Among test cases with the same number of degrees of freedom, best solution quality is obtained with Roe-type fluxes at moderately high orders (around sixth order). Solutions obtained with very high polynomial orders displayed spurious features attributed to a sharper dissipation in wavenumber space. Accuracy differences between the two dealiasing strategies considered were, however, observed for the low-order cases, which also yielded reduced solution quality compared to high-order results

    Issures in Discontinuous High-Order Methods: Broadband Wave Computation and Viscous Boundary Layer Resolution

    Get PDF
    A new discontinuous formulation named Correction Procedure via Reconstruction (CPR) was developed for conservation laws. CPR is an efficient nodal differential formulation unifying the discontinuous Galerkin (DG), spectral volume (SV) and spectral difference (SD) methods, is easy to implement. In this thesis, we deal with two issues: the efficient computation of broadband waves, and the proper resolution of a viscous boundary layer with the high-order CPR method. A hybrid discontinuous space including polynomial and Fourier bases is employed in the CPR formulation in order to compute broad-band waves. The polynomial bases are used to achieve a certain order of accuracy, while the Fourier bases are able to exactly resolve waves at a certain frequency. Free-parameters introduced in the Fourier bases are optimized in order to minimize both dispersion and dissipation errors by mimicking the dispersion-relation-preserving (DRP) method for a one-dimensional wave problem. For the one-dimensional wave problem, the dispersion and dissipation properties and the optimization procedure are investigated through a wave propagation analysis. The optimization procedure is verified with a wave propagation analysis and several numerical tests. The two-dimensional wave behavior is investigated through a wave propagation analysis and the wave propagation properties are verified with a numerical test of the two-dimensional acoustic wave equation. In order to understand the mesh size requirement to resolve a viscous boundary layer using CPR method, grid resolution studies are performed. . It is well known that the mesh size, which is defined from non-dimensional wall distance y^+=1, gives accepted results to simulate viscous boundary layer problem for 2nd order finite volume method. For high-order CPR formulation, what grid size y^+ is required to match the results from the 2nd order finite volume method with y^+=1. 1D and 2D burger\u27s equation are used as the viscous boundary layer model problem. Skin friction is used as the indicator of accuracy for the resolution of a boundary layer. Keywords: (Correction Procedure via Reconstruction), A Hybrid Discontinuous Space, Wave Propagation Analysis, Grid Resolution Study, Method of Manufactured Solution

    High Order Spectral Volume and Spectral Difference Methods on Unstructured Grids

    Get PDF
    The spectral volume (SV) and the spectral difference (SD) methods were developed by Wang and Liu and their collaborators for conservation laws on unstructured grids. They were introduced to achieve high-order accuracy in an efficient manner. Recently, these methods were extended to three-dimensional systems and to the Navier Stokes equations. The simplicity and robustness of these methods have made them competitive against other higher order methods such as the discontinuous Galerkin and residual distribution methods. Although explicit TVD Runge-Kutta schemes for the temporal advancement are easy to implement, they suffer from small time step limited by the Courant-Friedrichs-Lewy (CFL) condition. When the polynomial order is high or when the grid is stretched due to complex geometries or boundary layers, the convergence rate of explicit schemes slows down rapidly. Solution strategies to remedy this problem include implicit methods and multigrid methods. A novel implicit lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation method is employed as an iterative smoother. It is compared to the explicit TVD Runge-Kutta smoothers. For some p-multigrid calculations, combining implicit and explicit smoothers for different p-levels is also studied. The multigrid method considered is nonlinear and uses Full Approximation Scheme (FAS). An overall speed-up factor of up to 150 is obtained using a three-level p-multigrid LU-SGS approach in comparison with the single level explicit method for the Euler equations for the 3rd order SD method. A study of viscous flux formulations was carried out for the SV method. Three formulations were used to discretize the viscous fluxes: local discontinuous Galerkin (LDG), a penalty method and the 2nd method of Bassi and Rebay. Fourier analysis revealed some interesting advantages for the penalty method. These were implemented in the Navier Stokes solver. An implicit and p-multigrid method was also implemented for the above. An overall speed-up factor of up to 1500 is obtained using a three-level p-multigrid LU-SGS approach in comparison with the single level explicit method for the Navier-Stokes equations. The SV method was also extended to turbulent flows. The RANS based SA model was used to close the Reynolds stresses. The numerical results are very promising and indicate that the approaches have great potentials for 3D flow problems

    An adaptive quadrature-free implementation of the high-order spectral volume method on unstructured grids

    Get PDF
    An efficient implementation of the high-order spectral volume (SV) method is presented for multi-dimensional conservation laws on unstructured grids. In the SV method, each simplex cell is called a spectral volume (SV), and the SV is further subdivided into polygonal (2D), or polyhedral (3D) control volumes (CVs) to support high-order data reconstructions. In the traditional implementation, Gauss quadrature formulas are used to approximate the flux integrals on all faces. In the new approach, a nodal set is selected and used to reconstruct a high-order polynomial approximation for the flux vector, and then the flux integrals on the internal faces are computed analytically, without the need for Gauss quadrature formulas. This gives a significant advantage over the traditional SV method in efficiency and ease of implementation. Fundamental properties of the new SV implementation are studied and high-order accuracy is demonstrated for linear and nonlinear advection equations, and the Euler equations.;The new quadrature-free approach is then extended to handle local adaptive hp-refinement (grid and order refinement). Efficient edge-based adaptation utilizing a binary tree search algorithm is employed. Several different adaptation criteria which focus computational effort near high gradient regions are presented. Both h- and p-refinements are presented in a general framework where it is possible to perform either or both on any grid cell at any time. Several well-known inviscid flow test cases, subjected to various levels of adaptation, are utilized to demonstrate the effectiveness of the method.;An analysis of the accuracy and stability properties of the spectral volume (SV) method is then presented. The current work seeks to address the issue of stability, as well as polynomial quality, in the design of SV partitions. A new approach is presented, which efficiently locates stable partitions by means of constrained minimization. Once stable partitions are located, a high quality interpolation polynomial is then assured by subsequently minimizing the dissipation and dispersion errors of the stable partitions. Preliminary results are given which indicate this to be an effective method for use in the design of stable and highly accurate SV partitions of arbitrary order
    corecore