210 research outputs found

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Depth and IMU aided image deblurring based on deep learning

    Get PDF
    Abstract. With the wide usage and spread of camera phones, it becomes necessary to tackle the problem of the image blur. Embedding a camera in those small devices implies obviously small sensor size compared to sensors in professional cameras such as full-frame Digital Single-Lens Reflex (DSLR) cameras. As a result, this can dramatically affect the collected amount of photons on the image sensor. To overcome this, a long exposure time is needed, but with slight motions that often happen in handheld devices, experiencing image blur is inevitable. Our interest in this thesis is the motion blur that can be caused by the camera motion, scene (objects in the scene) motion, or generally the relative motion between the camera and scene. We use deep neural network (DNN) models in contrary to conventional (non DNN-based) methods which are computationally expensive and time-consuming. The process of deblurring an image is guided by utilizing the scene depth and camera’s inertial measurement unit (IMU) records. One of the challenges of adopting DNN solutions is that a relatively huge amount of data is needed to train the neural network. Moreover, several hyperparameters need to be tuned including the network architecture itself. To train our network, a novel and promising method of synthesizing spatially-variant motion blur is proposed that considers the depth variations in the scene, which showed improvement of results against other methods. In addition to the synthetic dataset generation algorithm, a real blurry and sharp dataset collection setup is designed. This setup can provide thousands of real blurry and sharp images which can be of paramount benefit in DNN training or fine-tuning

    Quantifying Uncertainty in High Dimensional Inverse Problems by Convex Optimisation

    Full text link
    Inverse problems play a key role in modern image/signal processing methods. However, since they are generally ill-conditioned or ill-posed due to lack of observations, their solutions may have significant intrinsic uncertainty. Analysing and quantifying this uncertainty is very challenging, particularly in high-dimensional problems and problems with non-smooth objective functionals (e.g. sparsity-promoting priors). In this article, a series of strategies to visualise this uncertainty are presented, e.g. highest posterior density credible regions, and local credible intervals (cf. error bars) for individual pixels and superpixels. Our methods support non-smooth priors for inverse problems and can be scaled to high-dimensional settings. Moreover, we present strategies to automatically set regularisation parameters so that the proposed uncertainty quantification (UQ) strategies become much easier to use. Also, different kinds of dictionaries (complete and over-complete) are used to represent the image/signal and their performance in the proposed UQ methodology is investigated.Comment: 5 pages, 5 figure
    • …
    corecore