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ABSTRACT

With the wide usage and spread of camera phones, it becomes necessary to tackle
the problem of the image blur. Embedding a camera in those small devices
implies obviously small sensor size compared to sensors in professional cameras
such as full-frame Digital Single-Lens Reflex (DSLR) cameras. As a result, this
can dramatically affect the collected amount of photons on the image sensor.
To overcome this, a long exposure time is needed, but with slight motions that
often happen in handheld devices, experiencing image blur is inevitable. Our
interest in this thesis is the motion blur that can be caused by the camera motion,
scene (objects in the scene) motion, or generally the relative motion between the
camera and scene. We use deep neural network (DNN) models in contrary to
conventional (non DNN-based) methods which are computationally expensive and
time-consuming. The process of deblurring an image is guided by utilizing the
scene depth and camera’s inertial measurement unit (IMU) records. One of the
challenges of adopting DNN solutions is that a relatively huge amount of data is
needed to train the neural network. Moreover, several hyperparameters need to
be tuned including the network architecture itself.

To train our network, a novel and promising method of synthesizing spatially-
variant motion blur is proposed that considers the depth variations in the scene,
which showed improvement of results against other methods. In addition to the
synthetic dataset generation algorithm, a real blurry and sharp dataset collection
setup is designed. This setup can provide thousands of real blurry and sharp
images which can be of paramount benefit in DNN training or fine-tuning.

Keywords: motion blur, deep neural network, synthetic dataset, data capturing
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1. INTRODUCTION

Handheld and mobile cameras become widely spread nowadays, and it is hard to find a
modern mobile phone that does not contain at least one camera. Embedding a camera
in devices that have a crowd of other complicated parts and the limit of the mobile
size, the camera sensors are very small compared to the full-frame sensors in the
professional cameras such as DSLR cameras. This imposes challenges since a lower
amount of photons will be collected by those sensors. However, the exposure time can
be increased to allow more photons to fall onto the sensors. Unfortunately, this may
not be possible without experiencing image blur from slight camera motion or object
motion especially at low light conditions. There are several types of image blur, and
some of them are created on purpose to result in aesthetic work, but our interest here
is the motion blur. Motion blur can result from the camera motion while the scene is
static, the scene motion while the camera is steady, or both of them, which cause very
complicated and spatially-variant blur. Moreover, when we have a relative camera-
scene translation, and significant variation in the scene depth with very close and far
objects, the depth becomes vital in determining the blur variations across the scene.

The problem of image blur has been widely studied through the literature and
several methods and techniques were proposed to remove or relieve the image blur and
enhance the image quality. With the success of the DNN models in a broad domain
of computer vision tasks, deblurring the image with several deep learning techniques
becomes attempting and showed promising results in comparison to conventional (non
deep learning-based) methods. This motivates us to undertake further exploration of
the exiting deep learning architectures and models and how to feed the additional
information to the learning models. The conventional methods are computationally
expensive and time-consuming compared to the deep learning-based techniques.
On the other hand, deep learning-based methods require a relatively huge amount
of diverse data samples to be effective for network training. Moreover, several
hyperparameters need to be tuned such as learning rate, number of layers, etc.

In this thesis, we propose a deep learning-based solution for deblurring images
suffering from spatially-variant blur with the help of the scene depth and camera’s
IMU measurements. Modern mobiles are usually equipped by IMU units which can
be utilized to determine the rotations and translations of the camera. Moreover, the
new mobiles have been increasingly equipped with multiple cameras or a depth sensor.
However, the range of the depth that can be retrieved by those multiple cameras are
limited due to the small baseline between the cameras.

Moreover, a novel technique is proposed for synthesizing spatially-variant blurred
images by utilizing the depth map and sampled IMU measurements. Our experiments
showed improvements in results of deblurring real-world blurry images compared to
other deep learning-based techniques.

Besides the synthetic dataset generation technique, a multi-camera setup is proposed
to collect real blurry and sharp image pairs and their corresponding depth maps
and IMU measurements. While collecting such data is extremely challenging, we
demonstrate a wide step of development in that direction. Moreover, we spot the lights
on the challenges that hinder the process of collecting those images. Such dataset can
be utilized for finetuning the pre-trained model to improve the results of deblurring
real-world blurry images.



2. IMAGE BLUR

Blur, a word that usually relates to image capturing process, is a type of degradation in
image. Blur in images can be seen as annoying thing and degradation in image quality,
while in other cases, it is seen as plausible thing and aesthetic work. But what is blur?
The best way to describe image blur is to list its types and explore the common things
among those types.

2.1. Blur Types

Image blur can be divided into 4 types based on their cause. They are motion blur,
defocus blur, atmospheric blur, intrinsic physical blur. In [1], they additionally divided
the first type, motion blur, to two more types: object motion blur, and camera shake
blur. Since our interest in this thesis is the motion blur, we discuss it in depth separately
in the next section, and talk here briefly about the other types.

e Defocus blur occurs when the camera is either able to bring the foreground or
background only into focus, but not both, as shown in Figure 1. While this
can be sometimes desirable and considered as artistic feature in the image, it
is considered as defect in other images where the details of both background
and foreground are needed. The defocus happens due to the shallow depth of
field (DOF) of the camera, which is mainly determined by the lens aperture size.
Defocus blur increases when the aperture size increases.

PR )
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Figure 1. Out-of-focus blur. The objects in the background are out of focus.

e Atmospheric blur is usually observed when the captured scene includes very far
objects. Generally, it happens because the atmospheric particulate matters hinder



the photons causing variation in the refractive index along the path to the camera
sensor. An example of such type of blur is illustrated in Figure 2.

Figure 2. Atmospheric blur on the left, restored image on the right [2].

e Intrinsic physical blur happens due to inherent issues in the imaging system
itself. For instance, the chromatic aberration, which is one type of lens (optical)
aberration, results from the varying refractive index of the lens for the incident
white light, making it hard for the light to converge into one point on the focal
plane. Other sources can be light diffraction characteristics, sensor resolution
and anti-aliasing filter (digital imaging). An example of optical aberration is
shown in Figure 3.

A

Figure 3. Optical aberration [1].
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2.2. Motion Blur
2.2.1. Why It Occurs?

Motion blur might happen when the camera moves while the scene is static, or when
the camera is steady but the scene is dynamic, or both of them are moving. Generally,
this can be called camera-scene motion, where there is relative motion between the
camera and the scene. When we refer to scene motion here, we mean objects that
belong to that scene.

During the exposure time, and supposing camera-scene motion, then the reflected
photons from points in the scene fall into different positions of the camera sensor.
This can be prevented by decreasing the exposure time such that it is faster than the
motion. However, with situations of low light conditions, this may be not possible,
since longer exposure time is required for the sensor to collect enough photons from
the scene. Moreover, in the modern phone cameras, the imaging system is embedded
in a very limited space with a crowd of other electronic components, which implies
that the sensor is significantly smaller than the full-frame camera sensor such as DSLR
camera. This will dramatically affect the amount of collected photons in the same
exposure time duration of the full-frame camera. Considering those aspects, it may not
be applicable to make the exposure time faster, and it should be long enough to collect
enough photons for the capture. Therefore with the handheld (or mobile phone) camera
motion and bad lighting conditions, avoiding the image blur might be inevitable.

The blur kernel or point spread function (PSF) is a function that describes the blur
across the image and how each point (pixel) in the image moves (spreads). The blur
across the scene can be uniform (spatially-invariant) or non-uniform (spatially-variant).
Uniform blur means that each point in the scene has the same blur kernel, while they
have varying blur kernels in the non-uniform case.

One simple example of uniform blur is as following: suppose we have a plane (e.g. a
paper) which is parallel to the image plane of the camera and we translate in a direction
parallel to the image plane, then the blur is uniform across all the points in the scene,
as shown in Figure 4a. The previous example is a very special and restricted case. In
real world, the blur is often non-uniform. One intuitive example of non-uniform blur
is the in-plane (in terms of image plane) rotation of the camera (i.e. around the camera

z-axis) where blur increases as we go away from the image center, as shown in Figure
4b.

2.2.2. Blur Kernel Determinants

There are several factors that affect the shape of the blur kernel through the motion
blurry image. First, we discuss the camera shake only situation, and then move to the
scene motion situation.

As we discussed in the previous subsection, the shake blur comes form changing
camera pose during the exposure time. Camera pose is determined by the orientation
and position of its 3D frame relative to a 3D world reference frame.
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(a) Uniform blur (b) Non-uniform blur

Figure 4. Uniform blur vs non-uniform blur. It is useful to observe the motion path of
a point in the scene by light streaks. Imagine that the white points are light points that
are co-planar and parallel to the image plane. (a) shows a uniform blur resulting from
in-plane camera translation. (b) shows an non-uniform blur resulting from in-plane
camera.

Motion trajectory and velocity. Intuitively, the velocity of motion and the path
camera takes during specific exposure time are factors that determine the blur kernel
shape.

Scene depth. When camera undergoes pure rotation around its optical center,
it reveals no additional information about the scene depth. For instance, when the
camera rotates around its Y-axis, it is observed that the occlusions do not change
and no additional information is provided about the occluded parts, and naturally the
boundaries only differ from a view to another. Moreover, the views are related to
each other with a homography. This is also the case when scene points share a planar
surface, which implies that there is no occlusion in the scene, but it does not matter in
that case how the camera moves and the views are still related with a homography. On
the other hand, when the camera undergoes translation and we have arbitrary (irregular)
3D scene with objects located in different depth, the occluded parts of the background
objects change and reveal new information about the 3D scene. Motion parallax is
considered as monocular cue for depth perception. The close object appears to move
faster than the farther objects. From the definition, it is clear that motion parallax does
not happen with pure camera rotation around its center, but with the camera translation.
Based on this observation, and supposing that the camera is translating along its X-axis
for instance, it is expected that the near objects undergo larger blur than the farther
objects, as in Figure 5. This indicates how depth can cause blur variation across the
scene, but does not mean that always the objects with significant depth will undergo
lesser blur than the near objects, for instance, if the camera rotates around its Y-axis in
one direction while translating in X-axis in the opposite direction. However this still
means that the depth is in effect.

In [3], they show that the most of blur in handheld camera comes from small
rotations around the camera center, and that the blur from translations requires
significant translation in the device motion which usually does not happen while
capturing images.
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Figure 5. Image with depth-dependent blur. The foreground poster is significantly
blurred, while the background is almost sharp.

Intrinsic matrix contains intrinsic parameters related to the camera, to distinguish
it from the extrinsic parameters which is basically the camera pose (rotations and
translations). In practice, usually intrinsic camera matrix K is defined as the following:

fo 0 ¢
K=10 f, ¢ (1)
0 0 1

where f, and f, are the focal length in the x and y direction respectively, and c, and
cy are the principal point coordinates in the x and y direction respectively.

Object Motion. When the situation includes object motion in addition to the camera
motion, it becomes more complicated. The blur kernel shape over the moving object
depends on the motion velocity (its quantity and direction), and object distance from
the camera. For instance, if there are two objects moving with the same velocity but
with different distance from the camera, then it is expected to experience more blur on
the closer object to the camera (parallax motion).

The blur model is a mathematical model that describes the characteristics of blur.
Such modelling is of vital role in understanding the behaviour of the blur and building
effective solution for it. The blur model can be exploited in removing the blur from
image, or the inverse direction, in synthesizing a type of blur in image on a purpose.
Moreover, in the new trends of using learning-based algorithms and models especially
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DNN models for image deblurring and image enhancement, it becomes essential to
provide a huge number of training samples of sharp and blurry pairs for those models
to be able to effectively remove blur from unseen images. Since it is extremely hard -
but still possible - to acquire both sharp and blurry images for the same scene in the real
world, it is important to find a way to synthesize a blur from the sharp image instances.
We will start by describing the general blur model, and then discuss the motion blur
modelling.

2.2.3. Spatially-Invariant Blur Model
Usually the general image blur is described as following:
B=I1IxS+n )

where B is the blurred image, I is the latent sharp image, * is the convolution operator,
S is the blur kernel (or PSF) and n is a noise term, that is usually additive white
Gaussian noise. However this model assumes only that blur in the whole scene is
uniform and all pixels are blurred the same way. In other words, it assumes uniform
blur kernel or spatially-invariant blur. Therefore it is not suitable for modelling motion
blur which often introduces a non-uniform blur or spatially-variant blur.

2.2.4. Spatially-Variant Blur Model

A more comprehensive motion blur model assumes that the blur is an integration of
the intermediate scene images along the camera motion path [4, 3, 5]:

B— / " H(6)dt+n 3)
t=0

where /(0;) is the image instance when the camera has pose 6, at time instant ¢. Since
we deal with a digital world with finite capacity, time discretization is applied:

B=7) ul(0;)+n )

where NV is the sampled time instants, and y; is the weight equivalent to the portion of
the time camera spends at pose ¢; during the exposure time.

Let py be a projected point in homogeneous coordinates (g, 30, 1)7, and a result
of projecting a 3D world point P = (X,Y, Z, 1)T at the beginning of exposure. The
projection p’ of the same 3D point as camera moves is related with p, through a planar
homography matrix H (6;, d) at time instant ¢; and depth d:

p(x7y76]) :H<9j7d)*p(xay790) (5)



14

where H is defined as the following:

HB;,d) = K/ (R(6;) + ST(0)r)K ©
where K is the camera intrinsic matrix. R(6;) and T'(#;) are camera rotation and
translation at pose 6; respectively, and r is the scene normal and usually assumed to be
a unit vector orthogonal to image plane for all points, r = 0,0, 1]7 (i.e. fronto-parallel
scene).

From equation (6), it can be noticed that when we have constant depth or no
translation, then all projected pixels at pose ¢; share the same homography matrix.
However, when we have arbitrary depth values (not planar scene), then every pixel
has its own homography matrix. Moreover, it is noticed that the scene depth variation
affects only when we have camera translation.



15

3. CONVENTIONAL IMAGE DEBLURRING
3.1. Problem Definition

Image deblurring is the process of recovering a latent sharp image from a blurry one.
If the blur kernel (or the PSF for every pixel) is known, the process is referred to
as non-blind image deblurring. In contrast, blind image deblurring aims to recover
the image without the existence of the blur kernel in the first place. Blind deblurring
is an inherently ill-posed problem since it is under-constrained, and there are many
combinations of blur kernel and latent image pairs that can result in the same blurry
image. This can be clearly noted from equation (2). Figure 6 illustrates this ill-
posedness. To constrain the solution space, several additional information and prior
knowledge are used, such as natural image statistics [6, 7, 8, 9], unnatural LO priors
[10], dark channel priors [11], color line priors [12], scene depth maps [13, 14, 5],
camera motion information [15, 16, 17, 18, 19], and other image observations e.g.
low/high resolution image pairs [20, 21], noisy/blurry image pairs [22] , and blurred
image sequence [23].

Figure 6. The deblurring process is an ill-posed problem since there are many possible
solutions for the blurred image on the left [24].

Image deblurring has been studied extensively in the literature since a long time ago
[25], and there are a huge variety of ideas that were proposed to tackle the problem.
Since we propose a deep learning-based technique in this thesis, we refer to the non-
deep learning-based techniques as "conventional" to distinguish them from the deep
learning-based techniques. In this chapter, our goal is not to list the conventional
techniques, but instead to introduce the essence of how the conventional methods
approached the problem, and the bases that the devised algorithms and ideas are built
on.
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3.2. Uniform Deblurring

In uniform deblurring, the PSF function is assumed to be uniform for all pixels in
the image. In this section, we discuss the commonly used approaches, which are
Maximum A Posteriori and Variational Marginalization approaches.

3.2.1. Maximum A Posteriori

The most commonly used conventional model for image deblurring under uniform
blur is the Maximum A Posteriori (MAP) which is based on Bayesian inference. The
famous Bayes’ rule is expressed as the following:

p(D]A)p(A)
p(D)

where A, D are events, and p(A|D) is the probability of event A occurring given that
event D happened, and it is called the posterior probability. p(D|A) is the probability
of event D occurring given that A happened, and it is called the likelihood. p(A) and
p(D) are the probabilities that event A and D happens respectively. p(A) is known as
the prior probability.

In our context and supposing blind deblurring, A represents the latent sharp image
I and the blur kernel S, and D represents the blurry image B. p(I) and p(S) are the
knowledge priors on the latent image and the blur kernel respectively. This can be
expressed from (7) as follows:

p(A|D) = (7)

p(I,S|B) = p(B|I, S)p(I)p(S)/p(B) (8)

Since p(B) is not changing and constant, it is more convenient to discard it and
rewrite (8) as follows:

p(1,5|B) o< p(BI|I, S)p(I)p(S) ©)
If S is known, i.e. non-blind deblurring, (9) becomes:
p(I|S, B) < p(B,S|I)p(I) (10)

To explore how those terms can be further extended to find the latent sharp image
and the blur kernel, we follow Shan et al. [8] work which proposed a blind image
deblurring for uniform blur. The aim of this is to give you the sense of the complexity
of the used optimization techniques which require heavy computation usually, and
how the conventional methods addressed the image deblurring problem in general. If
the image deblurring process is complicated for the uniform blur, it is intuitive that it
would be much more complicated in case of the non-uniform blur. Interested readers
are encouraged to check the full details in [8].

The likelihood p(B|I, S) is based on the uniform convolutional blur in Equation (2),
I %+ S — B = n. This term is usually called the data fitting term. However, this term is
ill-posed and regularizers and/or constraints are needed. They proposed to model the
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likelihood as a set of independent and identically distributed (i.i.d) random variables
for all pixels, where each of them follows a Gaussian distribution G. To consider the
spatial randomness of the noise, the first and second order derivatives of the pixel noise
are included in the likelihood. Let’s refer to the set of used partial derivative operators
as Z = {0y, Oy, Oy, Oys, Oyy, Oy }, and O, is an element in Z. The 0, operator simply
means no partial differentiation. The likelihood can be defined as follows:

p(B|1,S) = T] 1 G(0nil0,00.)

0+€Z 1

= 11 I ¢, 00.)

O0+€Z 1

(11)

where 7 is the pixel index, I; is the pixel value in image I, I{ is the pixel value in the
reconvolved image I = [ x S, and o0y, is the standard deviation (SD) when using the
partial operator O, .

The kernel prior p(.5) is based on the sparsity observation. This means that most of
the blur kernel values tend to be zero, and only a small portion of the kernel values
indicate how a point in the image moves. In addition, the values are assumed to be
non-negative. This can be modelled by an exponential distribution as follows:

p(S) =[] (12)
J

where A\ is the rate parameter of the exponential distribution, and j indexes over
elements in the blur kernel S. For the latent image prior p(/), Shan et al. [8] introduced
two components, local prior pl() and global prior pg(1) such that p(1) = pl(I)pg(I).
The global prior pg(I) is based on the learnt gradients from natural images which
follow a heavy-tailed distribution. To approximate the shape of the logarithmic
gradient distribution, a piece-wise continuous function w(0,I) is designed. The pg(I)
component then can be defined as the following:

pg(I) o [ J @™ (13)

The local prior pl(I) is devised to avoid ringing artifacts which could be dark and
light ripples that appear near strong edges after deconvolution. To handle this, the
standard deviation of pixels’ intensities are calculated inside a window of the same
size as the blur kernel with the central pixel representing the local window. Each local
window then is thresholded. If the value of the local window satisfies the threshold,
the central pixel is included in a set {2. The values of pixels in {2 are constrained such
that their blurred gradients are close to those of the latent image gradients:

pl(I) = [[ G(0.1; — 9, Bil0,01)G(0,1; — 0,Bil0,01) (14)

1€
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where o, is the standard deviation. By substituting (11), (12), (13), and (14) into
(9), and taking the negative log of (9), the maximization of the posterior becomes a
minimization problem which is commonly called an energy function:

E(I,S) x (Z A ||0L] % S — a*B|y§>

0+€Z
+ X [|w(0a ) + w (9, D) Iy
+ A3 (10,1 = 8:Bly © M +|9,I = 8,Bll; © M) +||S]),

(15)

where \;, Ay, and A3 are parameters that can be derived from the distributions. M
is a 2D binary mask to select the pixels that exist in region w, © is an element-wise
operator and ||, ||, denotes the p-norm operator.

This form of the energy function, with the data fitting term and the knowledge priors,
is usually used in the conventional deblurring methods. A high abstract general form
of the energy function can be formulated as the following:

E(I,S) = Epy(I,8) + Epeg(I, S) (16)

where Iy, is the data fitting term and E,., is the regularization terms.

The function in (15) is very complex with a very huge number of unknowns,
and requires sophisticated optimization methods. They solve the energy function
iteratively by alternating optimization, i.e. fixing the blur kernel to estimate the latent
image at first, then use the estimated latent image to estimate the blur kernel. In the
beginning, the blur kernel can be initialized with a rough kernel estimate e.g. a straight
line. Additionally, they leverage Fourier transformation to speed up the optimization
process.

3.2.2. Variational Marginalization

Marginalization approach attempts to approximate the posterior distribution for both
the kernel and the latent sharp image p(1, S|B) by a simpler, factorized distribution
using a variational method. The factorized form of this distribution means that it is
straightforward to marginalize over the solution space of the sharp image in order to
produce an estimate of the blur kernel S [3, 6]. While MAP-based approaches might
converge to wrong solution, the marginalization-based approaches are more robust but
slow [24].

Detailed analysis and evaluation of the MAP and marginalization problems in
uniform motion deblurring is provided in [26]. In [27] , they introduce a comparative
study of 12 uniform deblurring algorithms.
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3.3. Non-Uniform Deblurring

The real world blur is often non-uniform. Camera rotations usually introduce spatially
variant blur. The scene depth variation can also cause blur variations when the camera
undergoes translations as discussed in Section 2.2.2. Methods dealing with non-
uniform blur can be classified into two categories based on the used blur model:
homography-based models and patch-based models. Since we are interested in
exploiting the IMU measurements and the scene depth map to guide the deblurring
process, we spotlight on a closely related work in the last two sections.

3.3.1. Homography-Based Models

The methods of this group model the non-uniform blur as an integration of the
intermediate frames captured by the camera along its motion trajectory. A global
descriptor can be provided by a set of camera poses during the capturing process.
Apart from the different ways in which the methods tackled the non-uniform image
deblurring, the underlying idea is quite similar to the homography-based modelling
discussed in Section 2.2.4.

For instance, Whyte et al. [3] proposed a homography-based model for non-
uniform blur. Supposing mainly small camera rotations and translations, they showed
that the effect of the rotations is significantly larger than translations. Thus, they
considered that most of the blur is attributed to 3D camera rotations around its optical
center (i.e. in/out-of-plane rotations). To adapt uniform deblurring methods for non-
uniform deblurring, they substituted their model into two blind uniform deblurring
methods [6, 9], and another method that uses noisy/blurry image pairs [22]. Gupta
et al. [28] modelled the non-uniform blur in a similar approach by introducing a
motion density function, which finds weights for the whole possible camera poses.
However. They only considered in-plane rotations and translations (i.e. 3 degrees of
freedom motion). Tai et al. [4] modified a popular conventional non-blind uniform
deblurring algorithm Richardson-Lucy [25, 29] to handle non-uniform deblurring by
incorporating a projective motion path blur model (i.e. a homography-based model).
One problem when adapting a pure homography-based model in the conventional
methods is the difficulty of incorporating fast Fourier transform to speed up the
optimization process.

3.3.2. Patch-Based Models

The non-uniform blur is tackled by partitioning the image into patches. Every batch
is assumed to have an invariant blur kernel, as illustrated in Figure 7. This can be
mathematically described by slightly modifying (4):

B=> S"x(w @I)+n (17)
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where S() is the blur kernel at image region r, and w(") is an image of weights with the
same dimension as the latent image 7, such that the pixels in region 7 can be expressed
as (w" © 1) [16].

In [13], they build a tree structure for the image regions based on a depth map and
apply a coarse-to-fine kernel estimation from the top level regions to the leaf level
regions.

In contrast to the homography-based models, the patch-based models do not provide
a global descriptor for the blur. However, a patch-based model can take advantage of
using Fourier transforms to speed up the optimization process. Hirsch et al. [30] and
Hu et al. [16] use a hybrid model where a homography-based model is used for the
blur kernels. This can be achieved by modelling the S() as a linear combination of
kernel bases Hy, such that S(") = > ¢ toHp where Hy is the homography at camera
pose 6 and defined in Equation (6). The variables u are the coefficients of the kernel
bases, which are determined by the camera rotational and translational movement
[16]. Furthermore, the coefficient 1y can be considered as the weight equivalent to
the portion of the time camera spends at pose # during the exposure time.

Figure 7. An image, with spatially-variant blur, is partitioned to small patches, such
that the blur in every patch is almost uniform.




21

3.3.3. IMU-Aided Methods

In this section, we talk about the methods that leveraged the IMU measurements to
estimate the blur kernel to be used in image deblurring process. Nowadays, most of the
modern mobile devices and handheld cameras are equipped with IMU unit. The IMU
unit usually contains a gyroscope and an accelerometer. A gyroscope measures the
angular velocity at a given point around an axis. It can be used to measure the rotation
around an axis. An accelerometer measures the acceleration (i.e. rate of change in
velocity) at a given point along an axis. It can be used to measure translation from an
initial position.

Joshi et al. [15] attached special hardware equipped with IMU to a consumer
camera. They used the accelerometer and the gyroscope to estimate 6 degrees of
freedom rotations and translations during the exposure time. Those 6D poses then are
substituted into a homography-based model to estimate the blur kernels. To recover
a sharp image using the estimated blur kernel, they applied their blur model into a
MAP framework in (9) with a hyper-Laplacian image prior, and an energy function
was formulated by taking the negative log of the posterior. The IMU measurements
are prone to high error due to the integration of noisy sensor data which is known as
drift. The integration of noisy data can cause temporally increasing deviation from
the real motion. The noise from the accelerometer is worse since the noisy data is
integrated twice to get the position. To alleviate this problem, they introduced a drift
compensation technique inside the MAP framework. They showed the effectiveness
of adapting the image prior and the drift compensation instead of using the IMU
measurement directly.

Hu et al. [16] analyzed the practical issues of using smartphone IMUs for kernel
estimation. The IMUs used in smartphones are of less quality in order to limit power
consumption. They discussed the following issues:

e Time delay: there is a problem of synchronization between sensors since they
have different warm-up times.

e Rotation center: in [15], the rotational center is assumed to be in the optical
center, which is not always the case. Furthermore, the rotation center might
differ during a single capture depending on the exposure time length.

e Noisy sensor data: this is the same as the drift issue mentioned in [15]. The noise
in a smartphone IMU is expected to be worse.

e Gravity effect: the contribution of the gravity to the estimated translations is
unknown since it is difficult to estimate the initial orientation and velocity of the
camera.

In addition to these issues, the scene depth variation can affect the validity of the
estimated blur kernel when it depends only on the IMU measurements. To address
this, they exploited the phase-based auto-focus built into most smartphones to provide
sparse depth information. They proposed an image-based online calibration to address
the time delay and rotational center issue. The light streaks in the scene are exploited
whenever available. If there are no light streaks detected in the scene, they use a power
spectrum analysis technique. They adopted a region-based blur model and applied
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a homography-based model for the kernel estimation inside each region. An energy
function is formulated which is similar in spirit to (16). To minimize the energy
function, they applied an alternating optimization technique. At the beginning, the
kernel is initialised using the reading from the sensors, then a coarse-to-fine manner is
followed for kernel refinement. Finally, they noticed that their proposed method has
a limitation with the shallow scene depth, e.g. less than 0.5 meter, and the camera
undergoes a significant translation. In this situation, the blur kernel estimated initially
from the IMU readings can significantly differ from the true blur kernels.

3.3.4. Depth-Aided Methods

As discussed in Section 2.2.2, the scene depth variation can cause non-uniform blur
when the camera undergoes translational movement. Thus, leveraging the information
of the scene depth can be critical for estimating the blur kernel. In this section,
we mention two methods that use the scene depth information to guide the image
deblurring process.

Xu et al. [13] adopted pure patch-based model. Instead of simple partitioning of
the image into small regions, a tree-structure is built for the image regions based on
a depth map. The first step in their algorithm is to find a disparity map by stereo
matching for a blurred stereo image pair. After constructing the region-tree, the blur
kernels are estimated from high level nodes and propagated to lower level nodes for
blur kernel refinement. To estimate the blur kernel and the latent image, they apply
alternating optimization of an energy function similar to (16). In an iterative manner,
the estimated latent image is then used to refine the disparity map and rebuild the region
tree, and the previous steps are repeated.

Pan et al. [14] proposed to jointly estimate the camera motion and remove the non-
uniform blur from a single image using a depth map. They considered 6 degrees of
freedom camera motion and supposed small camera motions. A homography-based
model is adopted for the blur kernel, which contains the scene depth as an argument
similar to (4). They formulate an energy function with a data fitting term and carefully
designed regularization terms, which is similar to (16). To minimize the energy
function, they apply alternating optimization. The latent image is fixed to estimate
the motion variables, and then the estimated motion variable is used to estimate the
latent image. The alternation continues iteratively till convergence.
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4. DEEP LEARNING-BASED IMAGE DEBLURRING

4.1. Deep Learning and Neural Networks

Deep Learning is a subset of machine learning algorithms. As it is well known,
machine learning aims to generalize to unseen data by learning from data samples
called training dataset. Recently, Deep learning, especially DNN models, lead to
a breakthrough in a wide domain of challenging image processing and computer
vision tasks. In this chapter, we give a brief introduction about deep neural networks,
especially convolutional neural networks and its U-net architecture. We assume that
the reader has some knowledge of machine learning and deep learning. However, some
basic concepts and definitions are introduced as long as it is convenient.
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(a) A biological neuron [31].
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(b) An artificial neuron. 1, x3, 3 are the input
features, x is the bias, and w; are the weights.

output axon

Figure 8. The biological neuron and the artificial neuron.

The neural network is one of the approaches used in machine learning. The
elementary computational unit in the neural network is the neuron or the node. In
general, the neural network is inspired from the biological neural system. Figure 8
shows an artificial neuron and a real biological neuron. The inputs to the neuron are
the input features or the outputs of other neurons multiplied by weights, and a bias. The
neuron sums these inputs together and fires a signal based on an activation function.
The activation function is a non-linear function that models whether the neuron is
activated based on the inputs. This simple neuron is also known as Perceptron. A
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multi-layer perceptron (MLP), or simply an artificial neural network consists of an
input layer (data inputs or features), an output layer, and a number of hidden layers.
The word artificial is sometimes used with neural networks to distinguish them from
the biological neurons. However, neural networks usually refer to artificial neural
networks. A typical neural network with one output is depicted in Figure 9 . A
loss function (or a cost function) is designed to encourage the predicted output of
the network to follow the ground truth values (i.e. the distribution of the training
data). To avoid model overfitting on the training data and help the model generalize
well to unseen data, several regularization techniques are applied such as weight decay,
dropout rate, batch normalization, noise addition, dataset augmentation, and parameter
sharing [32]. Some of those techniques are not used directly for regularization, but they
introduce a regularization effect.

To find the parameters (i.e. the weights and the biases) of the network, an
optimization technique for the cost function is used to update the parameters with a
learning rate. The backpropagation algorithm [33] is used to compute the gradients
of the cost function and propagate the computed gradients backward in the network
by recursive application of the chain rule of calculus to calculate the gradients in each
layer. The calculated gradients in each layer are then utilized by the optimizer to update
the parameters. The training process can be considered as iterative output (forward
pass) and feedback (backward pass) process. An example of the loss function is the
mean squared error (MSE), also known as L2-norm, between the reference output and
the predicted output of the network. One popular optimizer used frequently for training
DNN is ADAM optimizer [34].

An essential difference that distinguish the deep learning techniques from other
machine learning techniques is that the input features are not hand crafted, but they
are designed automatically by the model. This means that the model will learn those
features. This is known as representation learning [32]. Furthermore, the deep learning
model can learn more abstract representation from the simpler representation. For
instance, if some shallow layer learn some primitive shapes, the deeper layer can learn
more complex shapes from those primitive shapes. Figure 10 depicts this difference.
Theoretically, the universal approximation theorem [32] states that a feed forward
network can represent any function.

X1

X2

X3

Figure 9. A typical neural network example of three inputs in the input layer, two
hidden layers, and one output in the output layer.
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Figure 10. A flow chart depicts how deep learning techniques differ from other
machine learning techniques [32].

4.2. Convolutional Neural Networks

A convolutional neural network (CNN) [35, 36] is a variation of deep neural networks.
While CNNs have already existed for a long time, their success was limited due to
the size of the available training datasets and the size of the considered networks
[37]. Recently, the usage of the CNNs led to tremendous advancements in a broad
domain of computer vision and image processing tasks. A popular architecture of
CNN consists of three basic components: a convolution layer, pooling layer and fully
connected layer. This architecture is suitable for image classification tasks. The fully
connected layer is added after multiple downsampling of the input. A fully connected
layer means that every node in the layer is connected to every node in the previous
layer. In classification tasks, nonlinear activation function (e.g. softmax) is used at the
final layer to compute the class scores, which is different from the nonlinear activation
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function used after each convolution layer (e.g. rectified linear unit or ReLU [38]). A
more abstract architecture of CNN is illustrated in Figure 11, which depicts the CNN
as cascading of blocks that comprise a convolution layer, nonlinear activation function
layer, and pooling layer.

Mext layer

F 3

Pooling layer

I

Detector layer:
Monlinear activation function

I

Convolution layer

F 3

Input to layers

Figure 11. An abstract architecture of a typical CNN as cascading blocks of
convolution, nonlinear activation, and pooling layers [32].

4.2.1. Convolution Layer

The convolution is a linear operation which is similar to the conventional convolution
used in image processing for image filtering (discrete convolution). The input is
convolved by a so-called filter or a kernel. The output of the convolution is usually
called the feature map. Since we are dealing with images, the most common
convolution operation is the 2D convolution. Figure 12 illustrates a 2D convolution
example. In 2D convolution, the filter has the same depth (number of channels) as
the input. The number of output channels is determined based on the number of used
filters. The output size (i.e. width and height) is determined by the kernel size, strides,
and padding. The stride is the distance between two consecutive application of the
filter along one direction. Padding is usually applied by inserting additional zeros into
the input. For instance, one can add the necessary padding values to keep the output
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size the same as the input. The output size can be determined using the following

equation:

2 — ks + 2% pd

(¥4 S+2x%p 1
st

od =

(18)

where od, iz, ks, pd, and st are the output size, input size, kernel size, and padding,
respectively.

Figure 12. An example of 2D convolution with 2*2 kernel over 4*4 input with unit
strides, and no padding [39].

Convolutional neural networks exploit three interesting ideas sparse interaction,
parameter sharing, and equivariant representation [32]. For sparse interaction (also
known as local connectivity or sparse weights), each entry in the 3D volume output
(the feature map) can be interpreted as an output of a neuron that looks into a local
region of the input as illustrated in Figure 13. This local region is referred to as the
receptive field, which is the same as the kernel size in this case, i.e. its height and
width. The receptive field of the nodes in a deeper layer in the CNN is larger since
they would look indirectly into a spatially larger region of that input. Figure 14 depicts
the receptive field of a shallow layer and a deeper layer. Instead of the nodes in a layer
connecting to every node in the previous layer similarly to fully connected nodes in
the neural network in Figure 9, the nodes connect only to a small number of nodes
in the input. For instance, if we need to detect small and meaningful features in the
image, e.g. edges, then those features are placed in a small patch of pixels inside
the whole image. Moreover, the neurons of one channel in the output can share the
same set of parameters. This means that one channel of the output in Figure 13 is
a result of applying the same kernel. This is applicable because if we have some
parameters that detect a specific type of feature in the image, there is no need to
learn a new set of parameters to detect the same feature in other regions of the image.
Consequently, the convolution becomes equivariant to translations (i.e translationally-
invariant). This means that if the input is translated, the result of the convolution
would be translated as well. However, the convolution is not naturally equivariant to
some other transformations, such as changes in the scale or rotation of an image [32].

The parameter sharing scheme introduced by the convolution layer decreases
significantly the number of model parameters, which in turn decreases the needed
memory to save the model parameters. For example, in Figure 13, let us assume
that we have an input with a size 32 *x 32 % 3 features (i.e. 1z = 32), and 5 filters
of size 4 x 4 (i.e. ks = 4) with a stride st = 2 and no padding. By applying the
equation (18), the output volume size would be 15 * 15 * 5. If we considered the fully
connected neurons scheme, the parameters (weights and biases) for this layer only shall
be (32%32x3)*(15x15%5) = 3,456, 000 weights, in addition to 15 15*5 biases which
would result in 3,457, 125 parameters in total. Considering the local connectivity of
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Figure 13. The convolution output (on the right) can be interpreted as a 3D volume of
neurons, such that each neuron looks into a local region of the input (on the left) [31].

the neurons (i.e. the sparse interaction property), each neuron then looks into a local
region with size 4 x 4 x 3, so each neuron has 4 * 4 x 3 = 48 weights plus one bias (i.e.
49 parameters in total). This would result in 15 * 15 x 5 x 49 = 55, 125 parameters.
Finally, considering the parameter sharing scheme in addition to local connectivity,
each neuron in a channel in the output volume shares the same parameters (i.e. uses
the same filter). Thus, we shall have (4 x4 x 3 + 1) x 8 = 392 parameters only.
There are some applications where assuming parameter sharing scheme would not be
valid. Consequently, the parameter sharing scheme is relaxed to local connectivity.
The weights and biases in the convolution layer are what the CNN learns during the
network training phase.

QL 0 0 0O

Figure 14. The deeper layers have larger receptive field than the shallower layers. For
instance, the shaded unit in the top row looks indirectly into all units in the bottom row,
while the shaded units in the middle row look into three of them each [32].

4.2.2. Dilation

Dilation [40], also known as atrous ( a french word means with holes), refers to that the
filter can have dilation or spacing between its parameters along one dimension. This
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can be explained by Figure 15. Therefore, we can modify equation (18) to properly
calculate the output size considering the kernel dilations as the following: od = (iz —
dl * (ks — 1)+ 2% pd —1)/st + 1, where dl is the dilation rate. Dilations can increase
the spatial extent of what filters can process without introducing additional parameters.

Figure 15. A dilated convolution example where a 3*3 kernel is convolving over a 7*7
input with a dilation rate of 2 [39].

4.2.3. 1 x 1 Convolution

This type of convolution layer was first investigated by Network in Network [41].
The usage of 1*1 convolution would make no sense at first since it can be considered
simply as a scaling operation. However, when taking into account that we deal with
3D volumes, such that the input is processed along its depth (i.e. the channels) and the
depth of the filter extends to the full depth of the input, the 1*1 convolution layer then
introduces a means of fusing features along multiple channels.

4.2.4. Deformable Convolution

In the deformable convolution [42], the kernels no longer have a regular rectangular
shape, but they can be of any arbitrary shape. The offsets of the kernel parameters
from its rectangular shape are learned during the network training. The usage of the
deformable convolution extends the spatial capability of the convolution layer to get
information that is not organized in a regular shape within the input.

4.2.5. Transpose Convolution

Transpose convolution, also known as deconvolution or fractional stride convolution,
can be considered as the inverse operation of convolution as depicted in Figure 16. For
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instance, one can use transpose convolution to go from something that has the shape of
the output of convolution to something that has the shape of its input. That is the case
when using the deconvolution in U-nets discussed in Section 4.2.8.

/

/ / ¥

[ / / \ T\
[ N / / 1. f A\
[l A= / LA / AN / \
/ Lo / R | xS ) \
/ P SOEDEN WS s
/ (Ve . | ) . . N -

> > N

Figure 16. A transpose convolution example. It is equivalent to convolving a 3*3
kernel over a 2*2 input with a unit strides and 2*2 zero padding [39].

4.2.6. Pooling Layer

A pooling layer is added to downsample the input. It is usually added after performing
the convolution and the activation. From its name, it can be considered that the pooling
layer summarizes and pools the input for some existing feature disregarding its exact
position. In other words, it can be shown that pooling is invariant to small translations
in the input. This means that if we translate the input by a small amount, most of the
pooling output values do not change [32]. One popular method is max pooling which
is usually performed spatially on a 2*2 region (or generally a small region) and outputs
the maximum value in that region. There are other popular variations of the pooling
such as average pooling, L2 norm pooling, and weighted average pooling based on the
distance to the centre pixel. The pooling layer performs a fixed operation, so there are
no parameters to be learned here.

4.2.7. Residual Block

The residual block was first introduced in [43]. The usage of residual blocks enabled
building deeper networks for better higher-level representations learning. The ability to
add more layers to make the network deeper was hindered by the problem of vanishing
gradients. It was observed that the gradients vanish (i.e. fall to zero) when adding more
layers to the network. Besides, adding more layers makes the training error higher.
They addressed this problem by proposing the residual block depicted in Figure 17.
The residual block contains a shortcut connection (also known as a skip connection)
which skips one or more layers to add the identity mapping of the input to the output
result of those stacked layers. In some contexts, the skip connection is sometimes
used to indicate a concatenation operation, while residual connection indicates to an
addition operation.
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Figure 17. A residual block [43].

4.2.8. U-Net Architecture

The U-Net was first coined by Ronneberger et al. [37] for biomedical image
segmentation. The U-Net architecture in Figure 18 consists of contracting path and
expanding path. The inputs are downsampled by convolution and pooling till reaching
a bottleneck after which the inputs are upsampled using deconvolutions. The U-Net
architecture introduces a per-pixel output which is useful in many image translation
tasks [44] and image restoration. While the architecture of the U-Net is basically
similar to the pure encoder-decoder network architecture, the main difference is the
usage of the skip connections between the encoder layers and decoder layers. For
instance, in Figure 18, the outputs in the encoder part are concatenated with the outputs
from the decoder parts. In the pure encoder-decoder, the inputs are encoded into some
representation or codes, which are then used by the decoder to reconstruct the output
without any other information from earlier layers before the bottleneck. Hence, the
training and the usage of encoder and decoder part can be performed separately, while
this is not the case in U-Net where there are connections between the encoder and the
decoder.
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Figure 18. The U-Net architecture example from [37]. Each blue box corresponds to a
multi-channel feature map. The number of channels is denoted on top of the box. The
width and height are provided at the lower left edge of the box. White boxes represent
copied feature maps. The arrows denote the different operations.
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4.3. Deblurring Techniques

With the recent success of DNNs in many tasks, it was attempting to leverage them
in low-level computer vision tasks such as image deblurring. In Chapter 3, we
discussed how the conventional methods approached the image deblurring problem
through designing of complicated energy functions. These functions are then solved
using sophisticated optimization techniques that usually require heavy computations
and take a long time. For instance, Whyte et al. [3] report that their adopted non-
uniform deblurring algorithm can take several hours to deblur an image of several
hundred pixels across on a modern workstation. Moreover, they assume only small
3D camera rotations around its optical centre which are supposed to be the typical
handheld camera shakes. In addition to that, conventional methods are still suffering
when handling severe spatially variant blurred images arisen from different and various
camera motions, in addition to scene depth variation as well. On the other hand, and
with the advances in the deep learning techniques and DNN architectures, the DNN
showed interesting and promising results in image deblurring in terms of speed and
output quality [45, 46, 47, 48, 49, 50]. However, there are challenges to be addressed,
namely, the dataset availability and the hyperparameters of the learning model.

Dataset Availability: Simultaneously acquiring real blurred and sharp image pairs
is extremely challenging. However, we show a promising setting of acquiring such
data in Chapter 5. Therefore, in most of the cases, the training dataset is synthesized
[50, 49]. In this context, we also show a novel way of synthesizing depth-dependent
blurred images in Chapter 5. Moreover, the success of deep learning based approaches
depends highly on the statistical consistency between the training dataset and the real
world blur cases. Hence, the training data should provide many variations of scenes
and camera motions to enable the learning model to generalize well to the unseen real
world blur cases.

Model Hyperparameters: Any parameter that is not learned during the training
phase of the DNN model is called a hyperparameter. There are many model
hyperparameters such as strides, dilations, padding, number of channels and kernel
size with convolution layers, number of layers, learning rate, regularization parameters,
dropout rate, batch normalization existence, weight decay parameters, etc. There
are many rules of thumb for finetuning hyperparameter.  Furthermore, there
are optimization methods for finding suitable hyperparameters [32]. The model
architecture itself can be considered as a hyperparameter. The network architecture
and components required for addressing the image deblurring are still subject for broad
improvements.

In this section, we introduce learning-based approaches for image deblurring and
then talk about closely related work, namely, DeepGyro [50] and DAVANET [49].

By considering the image deblurring process as two joint steps: the kernel estimation
step and the the deconvolution step, we can learn any of them separately or directly
output the latent sharp image from the blurred input. Sun et al. [51] adopted a
classification CNN to predict sparse blur kernels for a local patch. A dense motion field
is obtained via Markov Random Fields (MRF) from the sparse blur kernel. The final
latent sharp image is then recovered by a conventional non-blind deblurring method.
Gong et al. [52] utilized a fully CNN to estimate the dense motion flow from the
blurred image and used the same conventional method to recover the latent sharp
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image. Xu et al. [53] employed a deep CNN for sharp edge predictions, which is then
used to estimate the kernel and recover the sharp image using a conventional deblurring
method. In [54], they used a neural network for predicting Fourier coefficients for a
deconvolution filter. In [55], they partitioned the deblurring process to three modules:
feature extraction module, kernel estimation module and image estimation module.
Through the modules, they utilize deep neural networks and add other layers and
components that are inspired from the conventional techniques. They iterate over the
three stacked modules to recover the latent sharp image. They also mentioned other
previous usages of neural networks in the literature. Others [56, 57, 58] trained a
DNN for non-blind deconvolution to avoid the artefacts that are usually created by the
traditional non-blind deconvolution methods.

Instead of learning the kernel estimation and non-blind deconvolution separately
or replacing some steps in the conventional techniques with learning-based methods,
many single image deblurring methods [47, 59, 46, 48, 45, 50] were proposed to output
the latent image directly from the blurred one using a CNN-based solution. To increase
the receptive field and handle different blur kernel sizes, [47, 46, 60, 59] proposed
multi-scale system in a coarse-to-fine manner. This means that they gradually restore
the latent sharp image on different image resolutions similar to a pyramid scheme
[46]. In [47], they proposed a multi-scale fully CNN architecture for image deblurring
such that the deblurred low-resolution image is given to the next finer scale after
upsampling by upconvolution layer to match the next scale input size. Their model
includes the residual block as a building block. In a similar way, [46] designed a
multi-scale recurrent neural network (RNN). Each scale is an encoder-decoder CNN
with skip connections between the corresponding layers in the encoder and decoder,
and residual building blocks. Different from [47], they share the parameters among the
three scales and use a Long-Short Term Memory (LSTM) unit to share information
across scales. In addition, they use bilinear interpolation for upsampling (i.e. no
parameters are learned). Instead of no-sharing or sharing of parameters across the
scales, [60] proposed parameter selective sharing across the scales. They also introduce
the usage of nested skip connections inside each encoder-decoder CNN scale instead
of simple skip connections. In [59], they followed the coarse-to-fine fashion but with
three different fully convolutional subnetworks. Together, those subnetworks form
an architecture similar in spirit to an encode-decoder. Each subnetwork includes a
residual connection with the output. To handle spatially variant blur in dynamic scenes,
[48] proposed a spatial variant RNN. A decoder-encoder-style fully CNN with skip
connections is used to learn spatially variant weights for a four RNNs. Two other fully
CNNs, with skip connections between them, are used for feature extraction for the
RNNs, and image construction from the output of the RNNs. Bilinear interpolation
was used for upsampling operations to avoid artefacts created by deconvolution layers.
In [45], they proposed a conditional generative adversarial network (GAN) for blind
motion deblurring. GANs [61] include two networks playing against each other: a
generator and a discriminator. In our context, the generator tries to output a latent
sharp image, while the discriminator tries to decide whether this output is sharp. In
other words, the generator tries to fool the discriminator. With this concept, they train
a fully CNN and use residual building blocks that include an instance normalization
layer [62]. The discriminator architecture is identical to PatchGAN [44]. Similarly,
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[47] adopt adversarial loss by training a classification CNN as a discriminator. The
adversarial loss is used to obtain realistic sharp results.

In addition to the single image deblurring, many multi-image deblurring methods
were proposed. In principle, they take advantage of the different information that can
be aggregated from multiple images. Mustanieni et al. [63] utilized U-Net-style fully
CNN called LSDs for jointly denoising and deblurring a pair of long-exposure blurry
and short-exposure noisy images. Furthermore, they introduced a novel technique to
generate synthetic data for network training. Aittala et al. [64] proposed a fully CNN
for recovering a latent sharp image from a burst of differently degraded images. To give
equal consideration to all frames in the burst, they reflect the permutation invariance of
the frames into the U-Net architecture by sharing pooling layers between the identical
networks.

Moreover, video deblurring methods [65, 66, 67, 68, 69] can exploit additional
spatial and temporal information that exists across neighbouring frames. However,
in most cases, they should seek how to handle the alignment of neighbouring frames
together. Some of the above methods were proposed originally for dynamic scene
deblurring [47, 59, 46, 48, 60, 67, 68, 69], and some were not [50, 64, 63, 65].

4.3.1. IMU-Aided Deblurring

Mustaniemi et al. [50] proposed a gyroscope-aided image deblurring network called
DeepGyro. It is assumed that the images suffer from spatially-variant blur resulted
from small camera rotations around its optical centre which are supposed to be the
typical handheld camera shakes. With this assumption, the effect of translation can be
negligible, as shown in [3]. Furthermore, the blur kernels are supposed to be linear
under relatively small exposure time assumption. The gyroscope measurements are
leveraged to estimate the camera rotations. The blur kernels are then estimated using
the planar homography-based model discussed in Section 3.3.1. They also considered
the effect of the rolling shutter while computing the blur kernels. Modern mobiles are
usually equipped with a rolling shutter. This means that the image rows are not read
at the same time. Instead, each row is read at a slightly different time. If the camera is
moving as well, this can cause edge tilting artefacts in the image. To make the network
robust and able to generalize well to unseen blurry images, they add a slight noise into
the exact estimated blur kernels. The noisy gyro-based estimated blur kernels and the
blurry image are stacked together and fed to a U-net-style fully convolutional network.

To generate a training dataset, the homography model was exploited to calculate
planar homographies of the sharp image using the sampled camera poses (i.e.
rotations) during the exposure time. The calculated homographies are then averaged
to synthesize the blurred image.

4.3.2. Depth-Aided Deblurring

Zhou et al. [49] proposed a unified framework for stereo image deblurring using
the scene depth map and the aggregated information from the two views. The depth
map is estimated from the stereo images using a disparity network which predicts the
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bidirectional disparity maps (i.e. left and right disparities). Each view is provided as
an input to a U-Net-style fully CNN called DeblurNet. A fusion network is used to
fuse the disparity information, the encoder feature maps and the two views. The fusion
network consists of two small subnetworks called DepthAwareNet and GateNet. The
disparity output is further fused with the second last layer features from the disparity
network to produce fused depth features using DepthAwareNet. They benefit from the
different view information existing in a pair of stereo images by fusing them together.
To achieve this goal, the right view and its corresponding features generated from the
encoder of DeblurNet are warped to the left view using the left disparity map to align
them together. The two aligned views are fused together using GateNet. The output
of the GateNet serves as a map for accepting the good features and rejecting incorrect
ones. The two aligned features are fused together using the map produced by GateNet.
Finally, the fused view features, the fused depth features and the original view features
are concatenated together and fed to the decoder of DeblurNet. Those steps are then
repeated for the right view.

To increase the receptive field and the spatial information for the deeper layers
without increasing the model size, they concatenated four differently dilated
convolution layer outputs together. They named this block as the context module.
They showed the effectiveness of using the depth map and the context module on the
image deblurring results.

For the DeblurNet loss, they utilized the perceptual loss [70], in addition to the MSE
loss. The perceptual loss is defined as the L2-norm between the VGG-19 [71] features
of the predicted image and the reference sharp image.

To generate a synthetic dataset, they simulate a long exposure by averaging
neighbouring frames. They increased the frame rate by a frame interpolation method
to avoid ghosting artefacts existed in a previous dataset called GoPro [47].
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5. IMPLEMENTATION

In the previous chapters, we discussed how the conventional techniques and the
deep learning-based techniques approached the problem of image deblurring. In
this thesis, we propose a deep learning-based approach for image deblurring. The
image deblurring process is guided using the depth map and the IMU measurements.
Recently, mobile phones are equipped with multiple cameras for many purposes. One
of those purposes is estimating the depth map using a stereo camera or multiple
cameras. Although the range of the depth that can be captured by the cameras is
limited by the very small distance (i.e. the baseline) between the cameras, the effect of
the depth variations on the blur kernels decreases as the depth increases, and it requires
an aggressive translation in the camera motion to appear, which is far from the typical
camera shakes. In other words, the depth of the far objects has not to be very accurate
for the image deblurring purpose. Moreover, some phones are equipped with a depth
sensor. However, the quality of these sensors is limited due to power consumption
considerations and the issues related to the technology behind these sensors. The
modern phones and handheld cameras typically contain an IMU as well. The potential
issues with these embedded IMUs were discussed in Section 3.3.3.

The main aspects of a deep learning-based approach are the training dataset and
the model architecture. In this chapter, we introduce the details of a novel approach
of synthesizing depth-dependent blurred dataset. The generated synthetic blur is
spatially-variant due to the arbitrary rotations and translations of the camera and
the scene depth variations. After that, we propose a novel and promising setup for
acquiring real blurry and sharp pairs. While this is extremely challenging, we have
passed a long track of development in that direction. Finally, we introduce our deep
learning model architecture.

5.1. Synthetic Dataset Generation

One challenge of adopting a deep learning model is that it requires very huge dataset
for training. Acquiring such enormous dataset in the real world is very exhausting.
In this section, the novel technique provides an approach of efficiently synthesizing a
huge number of synthetic blurred images using sampled camera poses and an RGB-D
dataset.

5.1.1. Blur Generation Steps

As discussed in Section 2.2.2, the blur resulted from arbitrary camera motions (i.e.
rotations and translations) is usually spatially variant (i.e. non-uniform). Moreover,
the cases, where significant scene depth variations and camera translations exist, can
produce depth-dependant non-uniform blur.

To generate a synthetically blurred image, we use sample camera motions
(acquired using real camera motion) that simulate the arbitrary camera shakes. The
camera motion is recorded using the IMU. The IMU’s gyroscope and accelerometer
measurements are leveraged to retrieve the camera rotations and translations using the
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methods shown in [50, 16]. In addition to the camera motions, the algorithm requires
a sharp image and its corresponding per-pixel depth map, typically an RGB-D image.

The algorithm is based mainly on the blur homography-based model discussed
in Section 3.3.1. Equation (4) reveals the needed arguments for calculating the
homography, which are the rotation, translation, and the depth map. One more
parameter is the camera intrinsic matrix which is set based on the sharp image
specification. If no information is provided for the camera matrix, one can then choose
the camera matrix parameters in (1) based on the image width and height in pixels.
For instance, the principal point can be chosen to be the image centre, while the focal
length can be close to or larger than the image dimension.

We have a number of randomly sampled camera poses during the exposure time 7.
This number is determined by the sampling interval sf. For each camera pose, we
calculate the planar homography. The homographies are calculated per pixel since
we have different homography matrix for each pixel depending on its depth value.
The new position of each pixel is then determined using Equation (5) based on the
calculated homography for this pixel. The sharp image is then warped to that pose
using the calculated homography for each pixel. Finally, we calculate a weighted
average for all warped images during the exposure time using Equation (4). If we give
equal weight to every pose, this becomes simply a summation of the warped images
and then dividing by their number (which is also the number of sampled camera poses
during this exposure time). The steps of the method are shown in Algorithm 1.

Algorithm 1. Synthetic Blurred Image Generation
Input : Sharp image I , depth map D, camera poses 6, sampling interval s f,
and exposure time 7

Output: blurry image B

Sample a number of camera poses ¢’ using exposure time 7 and sampling
interval s f

Initialize a variable: average = 0

for each camera pose 0’ in 0’ do

4 Compute a homography for each pixel point = in / using Equation (4)

(vectorized implementation for the whole image points)

5 Find the new positions of all pixel points using Equation (5) (vectorized
implementation)

Find the reverse map. (See Section 5.1.3 for details)

Warp the sharp image using the reverse map to get warped image W

Update average variable: average = average + W

end

10 B = average/(size(d'))

=Y
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5.1.2. Blur Kernel Estimation

The blur kernels that are used as additional information to guide the image deblurring
model can be jointly estimated when generating the blurred image. To describe the
blur, we estimate two maps: one to describe the motion of pixels in X-axis direction
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and the second in Y-axis direction. The positions of image points at the start of the
exposure time and the end of the exposure time are used to estimate a liner blur kernel.
The same idea is used to estimate a blur kernel from the camera IMU measurements
without generating a synthetic blurred image.

5.1.3. Implementation Challenges

While implementing this technique, we faced two issues. The first issue is that
synthesizing the blurred image includes a nested loop. The outer loop iterates the
camera poses, and the inner loop is used for calculating the homography for each
pixel. The algorithm is implemented using Python. Including a nested loop with heavy
computations would make the code take a long time. To speed up the code, the nested
loop implementation was replaced by a carefully devised vectorized implementation.

The second issue was that the homography calculations provide the forward map for
warping the image. This means that it shows how each pixel moves from its original
position. However, the reverse map is needed for warping the sharp image. To achieve
this, another nested loop is used to find the per-pixel warping matrix, which has the
shape of the image. When finding the reverse map, the scene depth map is used to
choose the pixel with the smaller depth value (i.e. closer to the camera). For instance,
when calculating the new position of a pixel with a specific depth value, it can coincide
with another pixel, with different depth, which moves to the same place. Thus, we
harness the depth values to choose the foreground pixel. Including that as a nested
loop inside the bigger loop would take a very long time for generating only one blurred
image due to the dynamic typing used in Python language. This means that Python
interpreter every time checks the variable type within the loop, which is very slow. To
overcome this issue, this part of the code was implemented in C++ which follows a
static typing for the variables. This was achieved using Cython library [72].

Moreover, the pixels in the image are moving differently (i.e. blurred differently) due
to their different depth values. This causes holes (black regions) in the intermediate
warped image. These holes were compensated by using an inpainting method from
OpenCV library [73]. The inpainting method is the bottleneck in our code i.e. the
most time-consuming part in our code.

5.1.4. Dataset Details

The synthetic dataset generation technique enables us to generate potentially an
unlimited depth-dependent blurred dataset from RGB-D images. To enable the deep
learning model to generalize well to unseen blurry images, the model should be
trained with relatively huge multi-scenery data. In other words, we need a huge
dataset, which spans various scenes, of sharp images with their corresponding per-
pixel depth maps. Acquiring such data itself is extremely challenging and hard due
to the challenges of per-pixel depth estimation, and the huge number of the needed
data samples with many scene variations. For this purpose, we used the SceneNet
RGB-D dataset [74]. It contains about 5 million photo-realistic, indoor synthetic
RGB-D images. The Scenenet RGB-D dataset introduces 57 different layouts with
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16k different configurations. The configurations are randomly chosen, so the possible
configurations can virtually be unlimited.

The blur generated here is due to camera motion only (i.e. static scene), but it can
be extended for dynamic scene situations as well.

5.2. Real Dataset Collection

In this section, we introduce a technique for acquiring blurry and sharp image pairs
with their depth maps and IMU measurements.

5.2.1. The Main Idea

The main idea is to have a system setup with a camera for capturing the blurry image,
a second camera for capturing the sharp image, depth estimator camera and IMU unit.
The IMU unit can be embedded with the first camera capturing the blurry images
(e.g. a modern mobile phone). The components are fixed together to capture the data.
After collecting the data samples, the images from the different cameras need to be
synchronized with each other. Also, the IMU measurements need to be synchronized
with the start and the end of the exposure time of the first camera. The collected images
from the different cameras have different views. Consequently, the images should be
aligned together (i.e. registered).

( .-.__-“l[‘l‘l

Figure 19. The multi-Camera rig. The components of the rig are as the following:
Pixel4 mobile camera on the top, ZED stereo camera in the middle, and Canon DSLR
camera in the bottom.
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5.2.2. Multi-Camera Setup

Our multi-camera setup is a rig that contains three cameras as shown in Figure 19. The
three cameras are as the following:

Pixel4 camera: a Google Pixel4 mobile camera which is used to capture the
JPEG (i.e. the processed RAW image) and the corresponding RAW image. In
addition, the IMU measurements are recorded during the capture.

Canon camera: a DSLR camera which is used to capture the sharp image. The
camera version is Canon EOS 5D Mark IV.

ZED camera [75]: a stereo camera which is used to capture the scene depth.

5.2.3. Data Collection Procedure

During collecting the data, we should consider the necessary information for post-
processing the collected data. Therefore, the collection setup or design should include
some steps that guarantee the availability of the necessary information.

The steps proposed for collecting a set of sample images are as the following:

Take quite long videos with ZED and Canon cameras (10-20 minutes).

Capture running millisecond-clock images with the Pixel4 camera, during the
filming of the other cameras, to be used for calculating timestamp differences
among the cameras.

Capture multiple images for a checkerboard 9 x 6 to be used to calibrate the
cameras and get the relative position among them.

Capture other running millisecond-clock images to be used for verification.

Capture blurry images using Pixel4 during filming by moving the camera rig
while capturing.

Capture other running millisecond-clock images, close to the end of videos, to
be used for verification.

These steps are illustrated in Figure 20. The steps were devised such a way based on
the problems that we faced during the preparing and testing for the cameras to collect
the data.

After collecting the data, two main processing steps are performed. The first step is
the data synchronization, and the second step is the alignment of the images. In the
next sections, we discuss these two steps.
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Figure 20. Data collection steps. The flow of steps is shown by the direction of the
arrows. The first, third, and last images are running millisecond-clock images. The
second image depicts the capturing of the checkerboard images. The fourth image
is a blurry image captured by Pixel4. While capturing images with Pixel4, the other
cameras, Canon and ZED are filming.

5.2.4. Data Synchronization

For the images from the different cameras to be synchronized, the capturing process
should happen almost at the same time. For this purpose, a preliminary multi-threaded
code was implemented for controlling the cameras and issuing the capturing command
to three cameras at the same time. The most challenging camera to control was the
Canon since the commands for controlling it was reverse-engineered. The multi-
threaded program contains three threads for the three cameras. Each thread connects to
a camera. When capturing images of a running millisecond-clock using this code, there
was a difference between the captured images up to 1 second. A potential reason for
such a time difference is that each camera has its own response time in addition to the
delays in the communication between the computer and the cameras. The connection
between the computer and both of ZED camera and Canon camera was through a USB
cable, while the connection with Pixel4 was through WiFi. This huge time difference
would not be suitable for image capturing while the cameras are moving since that
would result in small regions of the scene shared among the cameras. Thus, controlling
the three different cameras through a software is not a proper idea.

After many trials, we proposed to take long videos with the Canon and ZED camera
(10-20 minutes) for each data collection session. While filming, we capture blurry
images with Pixel4. At first, we capture a running millisecond-clock to be used as
a reference frame. This reference frame is then picked from the three cameras to
determine the timestamp of each camera in which this reference frame was captured.
In this way, we have the three timestamps of the cameras as a reference for picking up
the other frames. A Python code was implemented to synchronize the Pixel4 frames
with other frames from the other cameras automatically. For instance, a timestamp
for a Pixel4 frame is used to determine the time duration between this frame and the
Pixel4 reference timestamp. This time duration is then added to the Canon reference
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timestamp to pickup up the nearest frame. The same steps are performed with the ZED
camera. The idea behind the long video is that the Canon camera time was changing
irregularly with every new video session. Moreover, it is more practical to handle a big
chunk at once instead of many small chunks.

5.2.5. Data Alignment

Data Alignment, or registration, is a substantial step to have unified views from the
three cameras. Each camera has its own view perspective. To map them to the view
perspective of Pixel4 Camera, we un-project the 2D view to the 3D view and re-project
it again to the perspective of Pixel4. Therefore, it is important to get the intrinsic matrix
K, defined in (1), of each camera and the relative position between each other.

Camera Calibration. The captured chessboard (checkerboard) images are used to
calibrate each camera to find its intrinsic matrix K and the distortion coefficients. Since
the cameras capture the same object (checkerboard), we can determine the relative
position between them. This can be implemented mainly by using two functions from
OpenCV library [73], namely "cameracalibrate” and "stereoCalibrate" for individual
camera calibration and finding the relative positions, respectively.

Alignment Procedure. To align the ZED view with the Pixel4 view, the 2D points
are un-projected to 3D points using the inverse of the calibrated ZED camera intrinsics
Kzgp. The depth map is used to rescale those 3D points. The 3D point cloud is then
transformed to the Pixel4 camera coordinates using the calibrated relative rotation and
translation of Pixel4 camera to ZED camera. The 3D point in Pixel4 camera coordinate
frame is then projected to the Pixel4 image coordinates using the calibrated Pixel4
camera intrinsics K ps. Warping the ZED image is only needed for verification of the
quality of the alignment. Similarly, the depth values are warped to Pixel4 perspective.

The 3D points in the ZED camera coordinate frame are transformed to the Canon
camera coordinate frame using the relative rotation and translation between ZED and
Canon cameras, and then to the Canon image coordinates using the Canon calibrated
camera intrinsics K,, to get the 2D points. Since the 3D points mapped to the 2D
Pixel4 image coordinates and the 2D Canon image coordinates, we have a 2D-to-2D
mapping between the Canon and the Pixel4 which is then used to warp the Canon view
to Pixel4 view. Also, we can think of this process as we map the 2D Canon texture
(Pixels values) to the 3D cloud points which are mapped to the projected 2D image
points of Pixel4.

To show the calculation flow of the un-projection and re-projection, let us suppose
we have cameral and camera2. We need the image of cameral to be warped to the
view perspective of camera?2.

To unproject a 2D point £ in homogeneous image coordinates of cameral, which is
represented by a 3 x 1 vector:

X =K' (19)

where K is cameral intrinsic matrix, and X is the up-to-scale 3D point. The 3D
point X is divided by its third element X(? (assuming zero-based indexing, and the
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superscript brackets notation is used to refer to a vector indexing) and multiplied by
the corresponding depth value as follows:

X, =Xxz/X® (20)

where X, is the 3D point in cameral coordinate frame, and z is the corresponding

depth value of the point. The 3D point )z in the homogeneous coordinate frame of
cameral is transformed to camera2 coordinate frame as follows:

G=[87T]X. @1)

where R, T are the 3 x 3 rotation matrix and the 3x 1 translation vector, respectively.
They represent the relative camera2 pose to cameral, and form the 4 x 4 camera2
extrinsic matrix. G is a 4 x 1 vector which represent the 3D point in the homogeneous

coordinate frame of camera2. We divide G by the scale element G®) such that G =

G /G®), where @ is the 3D point in homogeneous coordinates of camera2 with the
scale element equal to 1. The 3D point G/, which is in non-homogeneous coordinate,
is then projected to the image coordinate of camera2 as follows:

g =Ky x & (22)

where K is the camera?2 intrinsic matrix, and §' is the scaled 2D point which is divided

by the scale element ¢’(®) , and transformed to a non-homogeneous representation to
get the 2D point g in image coordinates of camera2.

Alignment Challenges. The process of alignment is not straightforward and many
issues result in undesired artefacts that are not trivial to be eliminated. The following
issues affect on the success of the image alignment: occlusions, calibration errors,
depth map errors, temporal shift, and rolling shutter effect. We explain each point in
the next paragraphs.

Occlusions. The three cameras (centres of the cameras) naturally have different
positions in the rig. Therefore, a camera can reveal a background object details
which are occluded by another camera. When warping the Canon or ZED view to
the perspective of Pixel4, the non-occluded details in Pixel4 images are interpolated
from the occluding objects in ZED or Canon image, or the neighbouring pixels in these
images. Making the camera as close to each other as possible can help to relieve this
issue, but it is inevitable.

Calibration Errors. As shown in Equations (19,20,21,22), the calibration
parameters: the intrinsic camera matrices, the rotation, and translation vectors are used
for un-projection and projection. Therefore, the errors in those calibration parameters
can produce errors in the alignment process.

Depth Map Errors. The scene depth is retrieved using the ZED camera. There
might be inaccurate depth values that can lead to an incorrect projection of the 3D
points to the other views. Furthermore, some regions are undefined due to the limited
depth range of the camera, which is limited by the baseline of the stereo camera, or the
stereo matching difficulties which can result from the surfaces with a regular texture
or reflections.
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Temporal Shift. As we discussed in Section 5.2.4, the synchronization process of a
Pixel4 image with the frames of the other cameras is performed by picking up the frame
with the nearest timestamp from ZED or Canon camera. Thus, there might be a slight
temporal shift between the Pixel4 image and the frame of ZED or Canon cameras. This
slight temporal shift between the images does not affect the alignment process when
the cameras are steady. However, since the cameras are moving during the capturing
process, the temporal shift can cause virtual shifts in the calibrated positions of the
cameras (i.e. their real positions) as illustrated in Figure 21. In other words, this
makes the cameras as if they have different relative positions from what they are in the
real camera rig setup. The effect of the temporal shift appears as a shift between the
aligned views as illustrated in Figure 22. The amount of the temporal shift depends on
the video frame rate and the movement of the cameras.

Pose seen due

Real Pose
o move

Figure 21. Temporal shift illustration example. C', Z, and P represent the Canon,
ZED, and Pixel4 cameras, respectively. The cameras appear as if they are shifted from
their real positions within the rig.

As a consequence of the temporal shift, the offline calibration we perform at the
beginning is not sufficient, and other processing steps are required to handle the shifts
between the aligned images. To relieve the temporal shift effect, we propose an online
image-based calibration technique. At first, we detect SIFT [76] features between the
ZED image and Pixel4 image. The 3D point cloud is already retrieved from the ZED
image and scene depth as explained at the beginning of this section. The 3D cloud
points are in the ZED camera coordinate frame. Thus, By having the 2D-to-2D SIFT
features matches and their corresponding 3D points, the problem turns into a problem
of finding the best pose of the Pixel4 camera that projects the 3D points to these 2D
points in the Pixel4 image i.e. finding the best relative pose of Pixel camera to the
ZED camera as illustrated in Figure 22. The same procedure is then applied to the
Canon camera, and for every image in the dataset. For finding the camera pose, we
use the solvePnP method with several variations of its parameters. Besides, we use
solvePnP with RANSAC scheme [77] to be resistant to outliers. The best alignment is
then chosen by comparing the image and the warped image together.

Rolling Shutter. A camera can be equipped with a rolling shutter or global shutter.
In contrast to the global shutter cameras, the rows of pixels in the rolling shutter camera
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(c) Warped Canon image. (d) Overlay the Pixel4 image
over the warped Canon imge.

Figure 22. The effect of the temporal shift on the alignment process. (c) shows the
warping result of the Canon image in (b) to the perspective of Pixel4 image in (a). In
(d), the Pixel4 image (with red checkerboard) overlays the warped Canon image to
visualize the temporal shift.

are not read at the same time, but they are slightly read at different times. If the camera
is steady, the rolling shutter does not affect the captured image. However, if the camera
is moving, the rolling shutter can cause tilting artefacts. For instance, if the camera is
rotating around its Y-axis, the straight vertical edges in the scene can appear tilted.
Consequently, this can affect the alignment process in general. Moreover, the rolling
shutter can especially hinder our proposed method for relieving the temporal shift. The
method for finding the best camera pose (solvePnP) might produce higher reprojection
error because not all detected points satisfy the found camera model. As a result, if
the solvePnP method is used with RANSAC, this may decrease the number of points
used for finding the camera pose which, in turn, produces errors in the alignment of the
images due to the non-sufficient number of points used for finding the camera pose.

5.2.6. Data Masks

Finding the mask that cover all the artefacts produced by warping images to the
perspective of Pixel4 is challenging. The simple pixel-by-pixel comparison between
the Pixel4 image and the warped image is not preferable since the Pixel4 image is
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Figure 23. An illustration of the online image-based technique which is followed to
relieve the temporal shift effect.

blurry. Thus, the goal of the mask is to cover most of the artefacts in the warped
image.

To cover the artefacts of the occlusions, the details appearing in the ZED image and
occluded in the Canon image are detected by exploiting the scene depth map (or the
3D point cloud). This is performed by tracking the projection of every 3D point to the
perspective of the Canon camera. If at least two points are projected to the same 2D
pixel in the image, this means that one of those points is occluded by the other point.
The depth map (the Z value of the 3D point) is used to decide which point is in the
foreground. The background point is then marked in the matrix of the 3D point cloud
as occluded. After tracking the whole 3D points, the marked points form a part of the
final mask. The masked area is increased by morphological operations. This will help
to cover the occluded details in the Canon image and appearing in the Pixel4 image
due to the positions of the cameras in the rig. The same steps are followed with the
Pixel4 image and ZED image to detect the details appearing in the ZED image and
occluded in the Pixel4 image.

Since the warped Canon image and the ZED image are both sharp, we can perform
a pixel-by-pixel comparison between them. This helps to cover the artefacts produced
by the reprojection or the shifts. Besides, it helps to cover the different reflections from
the surfaces.

The undefined or infinity depth values are marked in the mask as well. The final
mask is then the sum of all those masks.

5.3. Network Architecture

Our network architecture is a fully CNN that has the U-Net shape discussed in Section
4.2.8. The additional information layers are stacked with the blurry image. The
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corresponding convolution layers in the encoder and decoder are concatenated with
skip connections. The blurry image input is added to the output of the last convolution
layer with a residual connection. This residual connection has been shown to introduce
an improvement in the deblurred images when used. The residual connection can
enable the network to learn the residual between the deblurred image and the blurry
image, which is easier for the network. In addition, this can enable the network to
maintain colour consistency between the input and the output [49].

Skip-connections

Blur kernels
Depth
Blurred image
deblurred
image

- Conv + ReLU - Upconvolution 256
64 128 I Pooling I Conv + Linear 128 6 3

Figure 24. Our network architecture. The inputs to the network are stacked. All the
convolution filters are of size 3 x 3, except the last layer filter which is 1 x 1. The
size of upconvolution filters are 2 x 2. The pooling layer performs 2 x 2 max pooling.
The skip connections concatenate the corresponding layers between the encoder and
decoder. In the top, a residual connection is used between the blurry image input and
the output of the last convolution layer. This network is a modified version of [50].



48

6. EXPERIMENTAL RESULTS

We introduce the results of training the network with our generated synthetic dataset.
We show the results of providing additional information to the network to guide the
image deblurring process. The additional pieces of information are the estimated blur
kernel and the depth map. Our results are compared with the state-of-the-art deblurring
method DAVANet [49]. In addition to the generated synthetic data, real blurry and
sharp image pairs are collected. The real data is used to train the network from scratch,
or finetune the model pre-trained with the synthetic dataset. To show the effectiveness
of the additional information on the image deblurring process, we train the network in
the following variations: no-additional information (i.e. using only the blurred image),
providing depth information only, estimated blur kernels only, or both of them.

6.1. Evaluation Metrics

There are many evaluation metrics to compare the results of the deblurred image
against the reference latent sharp image. The most used evaluation metrics are the
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [78]. In addition,
several evaluation metrics were proposed when the reference sharp image does not
exist [27]. Moreover, in [27], they show that VIF [79] metric is more effective in case
of non-uniform deblurring. In our results and comparisons, we will utilize SSIM and
PSNR metrics.

6.2. Synthetic Dataset Details

We use SceneNet RGB-D [74] (5 millions of synthetic images) dataset to generate
depth-dependant blurred images for deep neural network training. The generated
dataset consists of 27K spatially-variant blurred and sharp image pairs with their
corresponding estimated blur kernels and depth maps. The 27K-dataset was generated
using 9K different configurations. The dataset was split to a training set with 24k
samples (8K different configurations), and testing set with 3k samples (1K different
configurations). The training dataset generation was computationally performed
across four separate processors to speed up the generation process. Random noise
from Poisson distribution is added to the synthetically generated blurred image.
Alternatively, random noise can be added during the training phase of the network,
however, this would slow down the training process a little bit. The noise addition is
shown to be important to regularize the network and enable it to generalize well to
the unseen data and avoid overfitting the training dataset. The resolution of the used
images is 320 x 240 pixels.

6.3. Real Dataset Details

Following the procedure explained in Section 5.2.3, we collect a real dataset of
blurry and sharp image pairs with their corresponding IMU measurements and scene
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(a) Blurry image. (b) Canon image.
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(c) Right ZED image. (d) ZED scene depth.

Figure 25. A real data sample where (a) is the Pixel4 image, (b) is the corresponding
canon frame, (c) is the corresponding ZED right frame, and (d) is the ZED depth scene.
Warping of the corresponding information to the Pixel4 is shown in Figure 26.

depth maps. After collecting the data, the images from the different cameras are
synchronized and aligned, and the image mask is generated as discussed in Section
5.2. The real dataset consists of 1649 image collected from 5 different scenes. The
dataset is split to 1273 samples (3 scenes) for training, and 376 samples (2 scenes) for
testing.

A sample image from the collected dataset is shown in Figure 25. The sample
contains a blurry image and its corresponding Canon image, Zed right image and ZED
right depth map. This data sample shows how the three cameras are synchronized. The
alignment of the Canon image and ZED depth of this example is shown in Figure 26.
Also, the generated mask that covers the incorrect pixels or regions is shown in Figure
26. To visually verify the quality of the warped Canon image (i.e. the sharp image)
and the image mask, the mask and the warped image are overlaid on the original blurry
image from Pixel4, as illustrated in Figure 26.

The resolution of Pixel4, ZED, and Canon images are 4032 x 3024, 1280 x 720, and
1920 x 1080, respectively.
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(a) Sharp image - warped from Canon image. (b) Scene depth map - warped form ZED depth.
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(c) Image mask. (d) Overlay mask and warped canon over Pixel 4 image.

Figure 26. Warping of Canon image and ZED depth to the perspective of Pixel4. In
(d), the mask and the warped Canon image are overlaid on the original blurry Pixel4
image for visual verification of the quality of the alignment.

6.4. Network Training

In this section, we discuss the details and results of training the proposed network using
both synthetic and real datasets.

6.4.1. Using Synthetic Dataset

The network is trained for 100 epochs. The used batch size is 32 samples. With the
24K-dataset for training, this means that the network performs 75K iterations. We use
Adam optimizer [34] with parameters §; = 0,9 and #; = 0,999. The initial training
rate is set to 10~* and decayed by 0,1 after the 80" epoch. We use the Keras platform
for our implementation.

In our experiments, we perform the following variants of network training:

e The blurred image only is provided as input to the network. In this context, we
use the word "blind"” to indicate that no additional information is provided with
the blurred image.
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e The depth map is provided with the blurred image as an input. The depth map
values are rescaled between 0-255.

e The depth map and the blur kernels are provided with the input.

e Both of the depth map and blur kernels are provided with the input.

In these experiments, the additional information is stacked as additional input layer
with the blurred image. We refer to our neural network trained with our synthetic
dataset as the synthetic model. Besides, we compare our results with the state-of-the-art
deblurring method DAVANet [49]. We refer to the DAVANet model that deblur a single
blurry image without any additional information as single DAVANet, and the model,
which deblur a stereo image exploiting the depth information and view aggregation as
stereo DAVANet. Also, we train their single DAVANet with our synthetic dataset, and
refer to this model as synthetic DAVANet.

The result of training our model with the synthetic dataset is shown in Figure 27. In
all cases, leveraging of either the estimated blur kernels or the scene depth map shows
better results in comparison with the blind case. Furthermore, in most cases, exploiting
of both pieces of information enable the network to perform better in terms of quality
of the deblurred image. In the fifth row of Figure 27, an interesting example shows
how the scene depth helps to recover much more details in the chandelier which is
very close to the camera and suffers from more blur in contrast to the other objects in
the scene.

To compare our results with single DAVANet, we train their single model with our
synthetic dataset. In Figure 28, the results show that our network performs better when
exploiting the scene depth map or the estimated blur kernel. Moreover, in terms of
SSIM, our synthetic model outperforms the single DAVANet model in all cases when
leveraging the scene depth and the estimated blur kernels.

In addition to the synthetic test images, we further test our model with real blurry
images, and compare the results with synthetic DAVANet, single DAVANet, and stereo
DAVANet. In Figure 29, the outputs of our network show competitive results with
single DAVANet. On the other hand, the results show improvements in the deblurred
images of synthetic DAVANet which is trained with our synthetic dataset. This shows
how our dataset is diverse, and enables the model to generalize much better than the
DAVANet proposed dataset. The deblurring of the single real blurry images using
stereo DAVANet produced heavy artefacts on the outputs. In DAVANet [49], their
work includes testing the stereo DAVANet with a one-sided image from their dataset
which does not produce any obvious artefacts.

Moreover, we captured real blurry images using ZED stereo camera. In Figure 30,
our synthetic dataset showed clearly better results when used to train the DAVANet
network in comparison to single and stereo DAVANet. This assures the effectiveness
of our dataset when utilized for training the DNN models. The DAVANet originally
proposed utilizing stereo images for deblurring. However, the results of deblurring real
blurry stereo images are almost still blurry with heavy artefacts. In their work, they
did not include any results of deblurring real blurry images.
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Figure 27. The image deblurring results of our synthetic model in the following cases:
blind case, using the scene depth information, using the estimated blur kernels, and
using both the scene depth and the estimated blur kernels. The image deblurring results
are shown in terms of SSIM and PSNR. A bold-font value indicates the maximum
value among the other cases in the same row.

6.4.2. Using Real Dataset

The pretrained model with the synthetic dataset is finetuned using the collected real
dataset. As a rule of thumb, and since this dataset is much smaller than the synthetic
dataset, we set the learning rate to 10 times smaller value than what we used in training
with the synthetic dataset. The finetuning is performed for 15 epochs with a batch size
of 2 samples. The whole model parameters are finetuned i.e. all model layers are
finetuned.
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Figure 28. The results of deblurring the blurred images in Figure 27 by the single
DAVANet model trained with our synthetic dataset. The synthetic DAVANet results
are shown in terms of SSIM in the first row, and PSNR in the second row. A bold-font
value indicates the maximum value among the other cases in the same row of Figure
27.

When deblurring samples from the real collected dataset, the samples seem to
be almost blurry with only very slight restoration cues. This happens because our
synthetic model experiences a very small number of samples with large blur sizes.
The resolution of the Pixel4 images is over 100 times larger than the synthetic images.
Thus, the blur kernels are vastly larger than what the synthetic blurred images have.
To adapt our network for the large blur kernels, we randomized the parameters of the
intrinsic camera matrix to account for the different blur kernel sizes.

At first, some samples of the real images are deblurred using the pretrained synthetic
model to act as a baseline for the results of finetuning the model. In other words, the
results of finetuning are compared to the results of the pretrained model to observe
how the finetuning affects the performance of the model in terms of the quality of
deblurring real images. Moreover, Figure 31 shows that our synthetic model deblurring
results outperformed the single DAVANet model results. The single DAVANet shows
no significant improvement on the deblurred real images. Also, we show preliminary
results of deblurring the real image with the help of the scene depth map. The depth
map is used without applying the data mask to remove the incorrect regions resulted
from warping the ZED depth map. Thus, it is expected to experience some artefact
when deblurring the image using the depth map. However, the goal of this experiment
is to observe the effectiveness of the scene depth on the deblurring process. Although
the deblurring results with the depth map slightly changed, one can still observe a
slight improvement on the foreground object in the first-column image in Figure 31.

The results of deblurring the real images after finetuning the pretrained synthetic
model are shown in the last row of Figure 31. The results suffer from heavy blur-like
artefacts. The reason behind these artefacts is that the real blurry and sharp image pair
is not perfectly aligned. To further figure out how we can relieve this problem, we
finetuned the model with a resized version of the real images, which is the same as
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Figure 29. The deblurring results of real blurry images with the following models:
synthetic DAVANet, single DAVANet, stereo DAVANet, and our synthetic model,
respectively. Utilizing our synthetic dataset to train DAVANet model improved the
visual results of the outputs.

the resolution of the synthetic blurred dataset. However, the problem still persists. In
addition, when we finetuned the model with a chosen subset of DAVANet subset, the
blur-like artefacts do not appear. Nevertheless, we noticed a decrease in the quality
of the deblurred synthetic images. Therefore, even if the data is well aligned, the
finetuning process should be handled very carefully as well. It becomes clear that the
misalignments need further handling.
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Synthetic DAVANet

Single DAVANet

Stereo DAVANet

Figure 30. Deblurring results of real blurry stereo images (only one side is shown
here) by the following models: synthetic, single, and stereo DAVANet. The results
of synthetic DAVANet is visually much better than single DAVANet as shown in the
green and blue boxes. The stereo DAVANet seems to be blurry with heavy artefacts.



56

Figure 31. The results of finetuning the pre-trained synthetic model. The figure shows a
visual comparison of deblurring the blurry images of the first row using the following
models (from the top to bottom): blind synthetic model, single DAVANet, synthetic
model with the depth map, and the fine-tuned model. The black regions in the images,
deblurred using the synthetic model with the depth map, indicate undefined depth
values.
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7. DISCUSSION

In this thesis, we proposed a deep learning-based approach for image deblurring which
is guided by the scene depth information and IMU measurements. The conventional
techniques, discussed in Chapter 3, are generally non-robust against non-uniform
blur. In addition, they are computationally time-consuming. However, many ideas
from conventional techniques can be beneficial for learning-based approaches. For
instance, leveraging of the scene depth and camera’s IMU has been studied in several
conventional methods [13, 5, 15, 16].

The network architecture and the availability of huge training dataset are the most
challenging aspects of adopting a DNN-based image deblurring solution.

In the context of providing training data, we proposed a novel technique which
can potentially synthesize unlimited spatially-variant blurred images. The scene depth
variations and 6D camera motions were considered when synthesizing spatially-variant
blur. The SceneNet RGB-D dataset [74], which contains 5 million photo-realistic
indoor images, was used to generate a large amount of blurred images. Although it
consists of 57 different layouts only, the different configurations that can be drawn
out from these layouts are virtually unlimited. The number of configurations in their
dataset is more than 16k. Our synthetic 24k-dataset has been shown to be effective
in blind deblurring (i.e. with no additional information) against the single and stereo
DAVANet [49] model trained with their dataset. The DAVANet dataset contains 20,637
blurry and sharp image pairs from 135 diverse scenes. Although this number is
over two times larger than the number of layouts in SceneNet RGB-D dataset, the
enormous number of configurations produced from these layouts played a vital role
in diversifying the dataset. Moreover, training the single DAVANet model with our
synthetic dataset clearly improved the prediction abilities of the model, and enabled it
to generalize well to unseen real blurry data.

Training the single DAVANet with our synthetic dataset enabled the model to
perform better than our blind model. The model architecture differences played a vital
role. There were two essential differences between the single DAVANet and our model.
The first was the usage of the residual blocks as the core building block of the DNN
model instead of cascading usual convolution and pooling layer outputs. The second
difference was the concatenation of a number of differently dilated convolution layers
(i.e. the context module) to increase the receptive field for the next layers without
increasing the model parameters. These two differences seem to make the model able
to learn better. While the usage of the context module was supposed to embed multi-
scale features, the single DAVANet was not able to handle different blur kernel sizes.
For future development, it is desirable to devise model architectures that can handle
images blurred with significant variations of blur sizes. However, considering the
total number of parameters in the model is crucial for computation-wise performance.
Besides, it has been shown that utilizing a residual connection between the blurry
image input and the output can slightly improve the result. Understanding the ideas
behind such components and the convolutional networks generally can tremendously
help to design better model architectures for addressing the challenging problem of the
image deblurring. Moreover, this should be combined with proper modelling of the
blur and studying of its properties.
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In our work, we showed that leveraging both the scene depth and the camera’s IMU
measurements produce better results for deblurring spatially-variant blurred images.
These results can be further extended to utilize sparse or noisy depth maps instead
of dense or per-pixel maps. In our work, the pieces of additional information are
stacked as additional input layers with the blurry image. However, more sophisticated
approaches can be considered for fusing the additional information with blurry image
information for better utilization of the aggregated information. Additionally, this can
help the network to handle the sparse or noisy information in both depth map and
IMU measurements. To observe the effect of utilizing scene depth, it was substantial
to generate blurred images which have spatially-variant blur kernels due to arbitrary
camera motions and scene depth variations. This was achieved by our novel synthetic
dataset generation technique. The blur kernels estimated from the IMU measurements
are linear. However, it is possible to consider non-linear blur kernels and propose
alternative ways to feed this information to the neural network.

Our solution is proposed for handling blur in static scenes. However, our synthetic
dataset generation tool can be extended to consider deblurring in dynamic scenes. For
future directions, one can consider leveraging of multiple frames to exploit the various
view information in the different frames. Furthermore, the utilization of multi-frame
input can be beneficial in case of dynamic scenes to estimate the motion of the objects
from the multiple frames.

In addition to our effective synthetic dataset generation tool, we proposed a
promising multi-camera setup for collecting real blurry and sharp image pairs and
their corresponding scene depth maps and camera’s IMU measurements. The most
challenging aspect was the alignment of the view from the different cameras, which
was hindered by several issues as discussed in Section 5.2.5. While the collection of
real blurry and sharp image pairs is extremely challenging, we have passed a long
track of development in that direction and introduced promising results for future
continuation of addressing the challenges of image registration. On the other hand,
the multi-camera system can be changed and further developed to relieve the problems
of synchronization and alignment of images. For instance, a hardware solution can
embed three homogeneous cameras in one device, where two cameras with a wide
baseline are used for estimating the depth and the third camera is very close to one of
them.

Despite the misalignment in the collected real data, we fine-tuned our synthetic
model to observe how the results of image deblurring improve when using the real
blurry and sharp images. However, blur-like artefacts appeared in the outputs of the
deblurring model. Thus, it became clear that the misalignment between the blurry
and reference sharp image requires further handling. In future, we can also consider
embedding a motion flow solution in our neural network model to deal with the
misalignment in the blurry and sharp image. We also tried to finetune the model from
a carefully chosen data sample form the DAVANet dataset [49]. While the blur-like
artefact did not appear, the performance of the synthetic image deblurring decreased a
little bit. This indicates that the process of finetuning should be approached carefully
as well.
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8. CONCLUSION

In this thesis, the scene depth and the IMU measurements were utilized in a fully CNN
for deblurring spatially-variant blurred images. The utilization of this information
showed improved results against the blind model in all tested cases, which indicates
the effectiveness of leveraging such information. Moreover, to train our network, we
proposed a novel technique to synthesize large amounts of spatially-variant blurred
images using sharp RGB-D images and sampled 6D camera motions. Our synthetic
dataset showed better results against single and stereo DAVANet [49] when deblurring
real blurry images. Thus, our synthetic dataset is highly effective for enabling the
model to generalize better to real-world blur.

Through our experiments, we trained the single DAVANet model with our synthetic
data which revealed better prediction abilities against our blind model. The
improvement is attributed to the utilization of residual blocks and the concatenation
of convolution layer outputs with different dilation rates. Understanding the reasons
behind the utilization of such components and the advantage they provide is essential
for designing proper models to address the image deblurring problem.

In addition to our effective synthetic dataset, a promising multi-camera setup was
proposed to collect real blurry and sharp image pairs and the corresponding scene
depth and IMU measurements. While collecting such data is extremely challenging,
we demonstrated motivating results for continuation of development in that direction.
Several challenges hindered the process of synchronization and alignment of the blurry
and sharp image pairs, especially the temporal shift and the rolling shutter effect of the
camera.

Finetuning our pretrained model with the collected real dataset resulted in blur-
like artefacts in the output. This means that the slight misalignments between the
blurry image and the sharp reference image should be further handled to make the real
dataset effective for training the deblurring models. Disregarding the misalignments,
the finetuning process itself should be approached carefully.

Wide space exists for improvement and development in the ideas and techniques of
image deblurring. Additionally, as the advances and developments in neural networks
continue, more robust and effective learning models can be built and utilized for
approaching the challenging problem of image deblurring.
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