3 research outputs found

    On the Expressivity and Applicability of Model Representation Formalisms

    Get PDF
    International audienceA number of first-order calculi employ an explicit model representation formalism in support of non-redundant inferences and for detecting satisfiability. Many of these formalisms can represent infinite Herbrand models. The first-order fragment of monadic, shallow, linear, Horn (MSLH) clauses, is such a formalism used in the approximation refinement calculus (AR). Our first result is a finite model property for MSLH clause sets. Therefore, MSLH clause sets cannot represent models of clause sets with inherently infinite models. Through a translation to tree automata, we further show that this limitation also applies to the linear fragments of implicit generalizations, which is the formalism used in the model-evolution calculus (ME), to atoms with disequality constraints, the formalisms used in the non-redundant clause learning calculus (NRCL), and to atoms with membership constraints, a formalism used for example in decision procedures for algebraic data types. Although these formalisms cannot represent models of clause sets with inherently infinite models, through an additional approximation step they can. This is our second main result. For clause sets including the definition of an equivalence relation with the help of an additional, novel approximation, called reflexive relation splitting, the approximation refinement calculus can automatically show satisfiability through the MSLH clause set formalism

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas
    corecore