19,490 research outputs found

    Counting Shortest Two Disjoint Paths in Cubic Planar Graphs with an NC Algorithm

    Get PDF
    Given an undirected graph and two disjoint vertex pairs s1,t1s_1,t_1 and s2,t2s_2,t_2, the Shortest two disjoint paths problem (S2DP) asks for the minimum total length of two vertex disjoint paths connecting s1s_1 with t1t_1, and s2s_2 with t2t_2, respectively. We show that for cubic planar graphs there are NC algorithms, uniform circuits of polynomial size and polylogarithmic depth, that compute the S2DP and moreover also output the number of such minimum length path pairs. Previously, to the best of our knowledge, no deterministic polynomial time algorithm was known for S2DP in cubic planar graphs with arbitrary placement of the terminals. In contrast, the randomized polynomial time algorithm by Bj\"orklund and Husfeldt, ICALP 2014, for general graphs is much slower, is serial in nature, and cannot count the solutions. Our results are built on an approach by Hirai and Namba, Algorithmica 2017, for a generalisation of S2DP, and fast algorithms for counting perfect matchings in planar graphs

    A Local-To-Global Theorem for Congested Shortest Paths

    Get PDF
    P_k such that each P_i is a shortest path from s_i to t_i, and every node in the graph is on at most c paths P_i, or reporting that no such collection of paths exists. When c = k, there are no congestion constraints, and the problem can be solved easily by running a shortest path algorithm for each pair (s_i,t_i) independently. At the other extreme, when c = 1, the (k,c)-SPC problem is equivalent to the k-Disjoint Shortest Paths (k-DSP) problem, where the collection of shortest paths must be node-disjoint. For fixed k, k-DSP is polynomial-time solvable on DAGs and undirected graphs. Amiri and Wargalla interpolated between these two extreme values of c, to obtain an algorithm for (k,c)-SPC on DAGs that runs in polynomial time when k-c is constant. In the same way, we prove that (k,c)-SPC can be solved in polynomial time on undirected graphs whenever k-c is constant. For directed graphs, because of our counterexample to the original theorem statement, our roundtrip local-to-global result does not imply such an algorithm (k,c)-SPC. Even without an algorithmic application, our proof for directed graphs may be of broader interest because it characterizes intriguing structural properties of shortest paths in directed graphs

    A Local-to-Global Theorem for Congested Shortest Paths

    Full text link
    Amiri and Wargalla (2020) proved the following local-to-global theorem in directed acyclic graphs (DAGs): if GG is a weighted DAG such that for each subset SS of 3 nodes there is a shortest path containing every node in SS, then there exists a pair (s,t)(s,t) of nodes such that there is a shortest stst-path containing every node in GG. We extend this theorem to general graphs. For undirected graphs, we prove that the same theorem holds (up to a difference in the constant 3). For directed graphs, we provide a counterexample to the theorem (for any constant), and prove a roundtrip analogue of the theorem which shows there exists a pair (s,t)(s,t) of nodes such that every node in GG is contained in the union of a shortest stst-path and a shortest tsts-path. The original theorem for DAGs has an application to the kk-Shortest Paths with Congestion cc ((k,ck,c)-SPC) problem. In this problem, we are given a weighted graph GG, together with kk node pairs (s1,t1),…,(sk,tk)(s_1,t_1),\dots,(s_k,t_k), and a positive integer c≤kc\leq k. We are tasked with finding paths P1,…,PkP_1,\dots, P_k such that each PiP_i is a shortest path from sis_i to tit_i, and every node in the graph is on at most cc paths PiP_i, or reporting that no such collection of paths exists. When c=kc=k the problem is easily solved by finding shortest paths for each pair (si,ti)(s_i,t_i) independently. When c=1c=1, the (k,c)(k,c)-SPC problem recovers the kk-Disjoint Shortest Paths (kk-DSP) problem, where the collection of shortest paths must be node-disjoint. For fixed kk, kk-DSP can be solved in polynomial time on DAGs and undirected graphs. Previous work shows that the local-to-global theorem for DAGs implies that (k,c)(k,c)-SPC on DAGs whenever k−ck-c is constant. In the same way, our work implies that (k,c)(k,c)-SPC can be solved in polynomial time on undirected graphs whenever k−ck-c is constant.Comment: Updated to reflect reviewer comment

    Shortest Vertex-Disjoint Two-Face Paths in Planar Graphs

    Get PDF
    Let GG be a directed planar graph of complexity~nn, each arc having a nonnegative length. Let ss and~tt be two distinct faces of~GG; let s1,ldots,sks_1,ldots,s_k be vertices incident with~ss; let t1,ldots,tkt_1,ldots,t_k be vertices incident with~tt. We give an algorithm to compute kk pairwise vertex-disjoint paths connecting the pairs (si,ti)(s_i,t_i) in~GG, with minimal total length, in O(knlogn)O(knlog n) time
    • …
    corecore