423 research outputs found

    Infinite matroids in graphs

    Get PDF
    It has recently been shown that infinite matroids can be axiomatized in a way that is very similar to finite matroids and permits duality. This was previously thought impossible, since finitary infinite matroids must have non-finitary duals. In this paper we illustrate the new theory by exhibiting its implications for the cycle and bond matroids of infinite graphs. We also describe their algebraic cycle matroids, those whose circuits are the finite cycles and double rays, and determine their duals. Finally, we give a sufficient condition for a matroid to be representable in a sense adapted to infinite matroids. Which graphic matroids are representable in this sense remains an open question.Comment: Figure correcte

    On semi-transitive orientability of Kneser graphs and their complements

    Get PDF
    An orientation of a graph is semi-transitive if it is acyclic, and for any directed path v0β†’v1β†’β‹―β†’vkv_0\rightarrow v_1\rightarrow \cdots\rightarrow v_k either there is no edge between v0v_0 and vkv_k, or viβ†’vjv_i\rightarrow v_j is an edge for all 0≀i<j≀k0\leq i<j\leq k. An undirected graph is semi-transitive if it admits a semi-transitive orientation. Semi-transitive graphs include several important classes of graphs such as 3-colorable graphs, comparability graphs, and circle graphs, and they are precisely the class of word-representable graphs studied extensively in the literature. In this paper, we study semi-transitive orientability of the celebrated Kneser graph K(n,k)K(n,k), which is the graph whose vertices correspond to the kk-element subsets of a set of nn elements, and where two vertices are adjacent if and only if the two corresponding sets are disjoint. We show that for nβ‰₯15kβˆ’24n\geq 15k-24, K(n,k)K(n,k) is not semi-transitive, while for k≀n≀2k+1k\leq n\leq 2k+1, K(n,k)K(n,k) is semi-transitive. Also, we show computationally that a subgraph SS on 16 vertices and 36 edges of K(8,3)K(8,3), and thus K(8,3)K(8,3) itself on 56 vertices and 280 edges, is non-semi-transitive. SS and K(8,3)K(8,3) are the first explicit examples of triangle-free non-semi-transitive graphs, whose existence was established via Erd\H{o}s' theorem by Halld\'{o}rsson et al. in 2011. Moreover, we show that the complement graph K(n,k)β€Ύ\overline{K(n,k)} of K(n,k)K(n,k) is semi-transitive if and only if nβ‰₯2kn\geq 2k

    Exposed faces of semidefinitely representable sets

    Full text link
    A linear matrix inequality (LMI) is a condition stating that a symmetric matrix whose entries are affine linear combinations of variables is positive semidefinite. Motivated by the fact that diagonal LMIs define polyhedra, the solution set of an LMI is called a spectrahedron. Linear images of spectrahedra are called semidefinite representable sets. Part of the interest in spectrahedra and semidefinite representable sets arises from the fact that one can efficiently optimize linear functions on them by semidefinite programming, like one can do on polyhedra by linear programming. It is known that every face of a spectrahedron is exposed. This is also true in the general context of rigidly convex sets. We study the same question for semidefinite representable sets. Lasserre proposed a moment matrix method to construct semidefinite representations for certain sets. Our main result is that this method can only work if all faces of the considered set are exposed. This necessary condition complements sufficient conditions recently proved by Lasserre, Helton and Nie

    Strongly representable atom structures of relation algebras

    Get PDF
    Accepted versio
    • …
    corecore