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Abstract

An orientation of a graph is semi-transitive if it is acyclic, and for
any directed path v0 → v1 → · · · → vk either there is no edge between
v0 and vk, or vi → vj is an edge for all 0 ≤ i < j ≤ k. An undirected
graph is semi-transitive if it admits a semi-transitive orientation. Semi-
transitive graphs include several important classes of graphs such as
3-colorable graphs, comparability graphs, and circle graphs, and they
are precisely the class of word-representable graphs studied extensively
in the literature.

In this paper, we study semi-transitive orientability of the cele-
brated Kneser graph K(n, k), which is the graph whose vertices cor-
respond to the k-element subsets of a set of n elements, and where
two vertices are adjacent if and only if the two corresponding sets
are disjoint. We show that for n ≥ 15k − 24, K(n, k) is not semi-
transitive, while for k ≤ n ≤ 2k + 1, K(n, k) is semi-transitive. Also,
we show computationally that a subgraph S on 16 vertices and 36
edges of K(8, 3), and thus K(8, 3) itself on 56 vertices and 280 edges,
is non-semi-transitive. S and K(8, 3) are the first explicit examples
of triangle-free non-semi-transitive graphs, whose existence was estab-
lished via Erdős’ theorem by Halldórsson et al. in 2011. Moreover, we
show that the complement graph K(n, k) of K(n, k) is semi-transitive
if and only if n ≥ 2k.
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1 Introduction

An orientation of a graph is semi-transitive if it is acyclic, and for any
directed path v0 → v1 → · · · → vk either there is no edge between v0 and vk,
or vi → vj is an edge for all 0 ≤ i < j ≤ k. The notion of a semi-transitive
orientation generalizes that of a transitive orientation. An undirected graph
is semi-transitive if it admits a semi-transitive orientation. Not all graphs
are semi-transitive, and the minimum (by the number of vertices) non-semi-
transitive graph is the wheel graph W5 on 6 vertices. Note that any complete
graph can be oriented transitively, and thus semi-transitively.

A shortcut C in a directed acyclic graph is an induced subgraph on
vertices {v0, v1, . . . , vk} for k ≥ 4 such that v0 → v1 → · · · → vk is a
directed path, v0 → vk is an edge, and there exist 0 ≤ i < j ≤ k such that
there is no edge between vi and vj . Thus, C has no directed cycles and
it is non-transitive, and an orientation is semi-transitive if and only if it is
acyclic and shortcut-free. The edge v0 → vk in C is called the shortcutting
edge, and the path v0 → v1 → · · · → vk is the long path in C.

The notion of a semi-transitive orientation was introduced by Halldórsson,
Kitaev and Pyatkin [6] in 2011 as a powerful tool to study word-representable
graphs defined in Section 2 via alternation of letters in words and studied
extensively in the recent years (see [8, 9] and references therein). The class of
semi-transitive graphs is precisely the hereditary class of word-representable
graphs. The roots of the theory of word-representable graphs, i.e. semi-
transitive graphs, are in the study of the celebrated Perkins semigroup in
[11], which has played a central role in semigroup theory since 1960, particu-
larly as a source of examples and counterexamples. However, the significance
of the class of semi-transitive graphs is in the fact that it includes several
important classes of graphs such as 3-colorable graphs, comparability graphs
and circle graphs [8, 9]. Note that the user-friendly software [5] by Glen is
of special importance for the development of the area, and we use it in this
paper to show a particular result.

For any two integers k ≥ 1 and n ≥ k, the Kneser graph K(n, k)
is the graph whose vertices correspond to the k-element subsets of a set
[n] := {1, 2, . . . , n}, where two vertices are adjacent if and only if the two
corresponding sets are disjoint1. In particular, K(5, 2) is isomorphic to the
celebrated Petersen graph. When writing down subsets, we omit brackets
and commas. Thus, for example, the subset {1, 4, 6, 7} is recorded by us

1Often, when defining the Kneser graph K(n, k), the assumption is that n ≥ 2k + 1
to avoid dealing with null graphs, which are meaningful in our context, since we also deal
with K(n, k).
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as 1467, while the subset {2, 9, 10} as 29(10), etc. A Kneser graph is ver-
tex transitive and edge transitive, and these graphs are named after Martin
Kneser, who first investigated them in 1955. There is a long line of research
dedicated to Kneser graphs; see the recent [13] and references therein.

In this paper we study semi-transitive orientability of Kneser graphs and
their complements. Our main results can be summarized as follows:

• For n ≥ 15k−24, K(n, k) is not semi-transitive (see Theorem 13), while
for k ≤ n ≤ 2k + 1 K(n, k) is semi-transitive (see Theorem 9). More-
over, it is shown by the software [5] that K(8, 3) is not semi-transitive
(see the discussion at the end of Section 3). A certain subgraph S of
K(8, 3) presented in Figure 1 and K(8, 3) itself are the first explicit
examples of triangle-free non-semi-transitive graphs, whose existence
was established via Erdős’ theorem by Halldórsson, Kitaev and Py-
atkin in [6].

• The complement graph K(n, k) of K(n, k) is semi-transitive if and
only if n ≥ 2k (see Theorem 18).

2 Known results to be used in the paper

We begin with the following well known result.

Theorem 1. Let G be an acyclically oriented graph with chromatic number
m. Then, G contains a directed path of length at least m− 1.

Proof. Any acyclic orientation contains a source, i.e. a vertex with no in-
coming edges. Consider all sources and colour them in colour 1. Remove all
sources along with the edges connected to them, and colour the sources in
the obtained acyclic graph in colour 2. Proceed in this way. If the longest
path in G is of length at most m − 2, then it is possible to colour G in at
most m−1 colours contradicting the chromatic number of G being m. Thus,
G contains a directed path of length at least m− 1.

2.1 Kneser graphs and their complements

Theorem 2 ([12]). For n ≥ 2k − 1, the chromatic number of the Kneser
graph K(n, k) is n− 2k + 2.

The following is a well known and easy to see fact.

Lemma 3. When n < ck, K(n, k) does not contain cliques Kc of size c,
whereas it does contain such cliques when n ≥ ck.
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An independent set is a set of vertices no two of which are connected
by an edge. The independence number of a graph is the size of a maximal
independent set.

Theorem 4 (The Erdős-Ko-Rado Theorem; [4]). The independence number
of the Kneser graph K(n, k), equivalently, the size of the largest clique in
K(n, k), is

(

n−1
k−1

)

.

Theorem 5 ([2]). The chromatic number of the graph K(n, k) is
⌈(

n
k

)

/
⌊

n
k

⌋⌉

.

2.2 Semi-transitive graphs and word-representability

Theorem 6 ([7]). Any 3-colourable graph is semi-transitive.

Proof. Colour the vertices in a given 3-colourable graph G in colours 1, 2
and 3, and orient the edges from a smaller colour to a larger colour. Such
orientation is clearly acyclic. Moreover, it is shortcut-free since the longest
direct path is of length 2, while for a shortcut we need a directed path of
length 3. Thus, the orientation is semi-transitive.

Lemma 7 ([1]). Suppose that the vertices in {a, b, c, d} induce a subgraph
S in a partially oriented graph such that a → b and b → c are edges, cd and
da are non-oriented edges, and S is different from the complete graph K4.
Then, the unique way to orient cd and da in order not to create a directed
cycle or a shortcut is a → d and d → c.

Proof. Indeed, suppose that the edge cd is oriented as c → d. Then, orienting
ad will either give the cycle a → b → c → d → a, or the shortcut with the
shortcutting edge a → d. Thus, the orientation of cd must be d → c. To
complete the proof, we note that orienting da as d → a will give a shortcut
with the shortcutting edge d → c.

To accomodate a simple proof of Theorem 15, next we introduce the
notion of a word-representable graph and state the relation between semi-
transitive graphs and word-representable graphs in Theorem 8.

Letters x and y alternate in a word w if after deleting in w all letters
but the copies of x and y we either obtain a word xyxy · · · (of even or odd
length) or a word yxyx · · · (of even or odd length). For example, the letters
2 and 5 alternate in the word 11245431252, while the letters 2 and 4 do not
alternate in this word. A simple graph G = (V,E) is word-representable if
there exists a word w over the alphabet V such that letters x and y alternate
in w iff xy ∈ E. By definition, w must contain each letter in V . We say that
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w represents G. For example, each complete graph Kn can be represented
by any permutation π of {1, 2, . . . , n}, or by π concatenated any number of
times. Also, the empty graph En (also known as an edgeless graph, or a null
graph) on vertices {1, 2, . . . , n} can be represented by 1122 · · · nn, or by any
permutation concatenated with the same permutation written in the reverse
order.

Theorem 8 ([7]). A graph is semi-transitive if and only if it is word-
representable.

3 Semi-transitivity of Kneser graphs

Theorem 9. For k ≤ n ≤ 2k + 1, K(n, k) is semi-transitive.

Proof. By Theorem 2, for n ≤ 2k + 1, K(n, k) is 3-colourable, and thus is
semi-transitive by Theorem 6.

The following lemma is easy to see.

Lemma 10. The graph K(n, k) (resp., K(n, k)) is an induced subgraph in
any graph K(m,k) (resp., K(m,k)) for m ≥ n.

Proof. The subgraph of K(m,k) induced only by the vertices formed by the
elements in {1, 2, . . . , n} is isomorphic to K(n, k). The statement for the
complements now follows as well.

In the following theorem, we repeatedly use the fact that K(6, 2) is K4-
free by Lemma 3, which allows the application of Lemma 7.

Theorem 11. The Kneser graph K(n, 2) is not semi-transitive for n ≥ 6.

Proof. By Lemma 10, and the hereditary nature of semi-transitivity, it is
sufficient to prove the theorem for K(6, 2).

We proceed by contradiction. Assume that K(6, 2) can be oriented semi-
transitively and fix such an orientation. Since the chromatic number of
K(6, 2) is 4 by Theorem 2, by Theorem 1 the oriented copy of K(6, 2) must
contain a directed path A → B → C → D. Note that if the edge A → D
exists, we would obtain a contradiction, since the vertices A,B,C,D would
induce a shortcut (K(6, 2) is K4-free). Thus, there is no edge in K(6, 2)
between A and D, and without loss of generality, we can assume that one
of the following three cases occurs, where abcdef is a permutation of [6]:
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Case 1. A = ab, B = cd, C = be and D = af (C is uniquely determined once
the assumption that D involves a is made). Note that in this case,
B → D is an edge.

Case 2. A = ab, B = cd, C = ef and D = ac (the assumption here is that D
shares an element with A and B). This case is equivalent to Case 1,
since reversing all edges in a semi-transitive orientation gives a semi-
transitive orientation, and the letters a, b, . . . can be renamed. So,
Case 2 does not need to be considered.

Case 3. A = ab, B = cd, C = be and D = ac (the assumption here is that
D shares an element with A and B, and C shares an element with
A). In this case, consider the 4-cycle induced by A, B, C and df . By
Lemma 7, we must have the following edges: A → df and df → C.
But then, the directed path A → df → C → D is equivalent to the
path in Case 1, so Case 3 does not need to be considered.

Thus, we only need to consider Case 1 and arrive at a contradiction.
Our strategy here is to consider a number of graphs induced by 4 vertices
(in certain order) in which orientation of edges is uniquely determined from
our assumptions. Eventually, we will show that shortcuts are unavoidable.
In what follows, for convenience, we do not use the letters A, B, C and D,
writing the 2-set partitions corresponding to them instead.

• From the graph induced by ab, df , cd, be, by Lemma 7, we must have
ab → df and df → be.

• If ce → ab is an edge, then either we have the cycle ce → ab → cd →
be → af → ce, or we have the shortcut with the shortcutting edge
ce → af and the long path ce → ab → cd → be → af . Thus, we must
have ab → ce.

• If af → ce is an edge, then ab → cd → be → af → ce is the long path
and ab → ce is the shortcutting edge in a shortcut. Thus, we must
have ce → af .

• Replacing ce by de in the last two bullet points, we see that ab → de
and de → af are edges.

• If ce → df is an edge, then ce → df → be → af is the long path and
ce → af is the shortcutting edge in a shortcut. Thus, we must have
df → ce.
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• From the graph induced by df , be, af and bc, by Lemma 7, we must
have df → bc and bc → af .

• From the graph induced by ab, df , de and bc, to avoid a shortcut, we
must have de → bc.

• From the graph induced by ab, de, ef and bc, by Lemma 7, we must
have ab → ef and ef → bc.

• From the graph induced by ef , bc, bd and af , by Lemma 7, we must
have ef → bd and bd → af .

• From the graph induced by ab, ef , ce and bd, by Lemma 7, we must
have ab → ce and ce → bd.

• From the graph induced by df , ce, ae and bd, by Lemma 7, we must
have df → ae and ae → bd.

• From the graph induced by cd, ae, be and df , we must have cd → ae
to avoid a shortcut.

• From the graph induced by ab, cf , cd and ae, we must have cf → ae
to avoid a shortcut.

• From the graph induced by cf , ae, de and bc, we must have ae → bc
to avoid a shortcut.

But we obtain a contradiction, since there is a shortcut with the long path
cd → ae → bc → af and the shortcutting edge cd → af . Thus, K(6, 2) is
not semi-transitively orientable.

Remark 12. We note that K(6, 2), and thus any K(m, 2) for m ≥ 6, is not
a minimal non-semi-transitive graph. Software check (using [5]) shows that
removing any vertex in K(6, 2) gives a non-semi-transitive graph.

The following theorem generalizes Theorem 11.

Theorem 13. For n ≥ 15k − 24 and k ≥ 2, K(n, k) is not semi-transitive.

Proof. We claim that such a K(n, k) contains K(6, 2) as an induced sub-
graph, and thus is non-semi-transitive by Theorem 11. Indeed, consider
inserting to each 2-subset involved in building K(6, 2) (k − 2) distinct ele-
ments so that no two 2-subsets receive the same new element. Then, the
number of new elements is 15(k − 2), and the total number of elements is
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1(357) 2(468)

3(128)

4(146)

5(148)

6(168)

7(217)

8(235)

9(237)

10(257)

11(346)

13(258)

14(458)

12(345)

15(167)

16(367)

Figure 1: A minimal non-semi-transitive subgraph S of K(8, 3). Name of a
vertex is in bold, and the set partition corresponding to it is in parenthesis.

6 + 15(k − 2) = 15k − 24, where 6 came from the 6 elements used to build
K(6, 2). Our construction shows that K(6, 2) is an induced subgraph in
K(15k − 24, k) since no edge in K(6, 2) is affected by the construction,
and thus in any K(n, k), n ≥ 15k − 24, by Lemma 10. Since K(6, 2)
is non-semi-transitive by Theorem 11, K(n, k) is non-semi-transitive for
n ≥ 15k − 24.

To extend our knowledge on semi-transitivity of Kneser graphs to the
unknown cases, we have looked at K(8, 3) having 56 vertices and 280 edges.
Using the software [5], we have learned that the subgraph of K(8, 3) formed
by the 46 lexicographically smallest vertices (123, 124, 126, etc) is semi-
transitive, and a semi-transitive orientation was found within 2 seconds.
However, adding one more vertex to the subgraph (456, the 47th lexico-
graphically smallest one), resulted in no result returned by the software
within a few hours, which was an indication, but not a given fact, that
the graph may not be semi-transitive. Thus, our next goal was to find a
non-semi-transitive subgraph S of K(8, 3) of a smaller size, for which the
software would return a definite answer on non-semi-transitivity of S, and
thus of K(8, 3). Such a graph S, presented in Figure 1, was found using
clustering nodes into independent sets and then eliminating certain nodes.
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Checking non-semi-transitivity of S takes just below 4 seconds using the
software [5], and the minimality of S is straightforward to check using the
same software. S contains 16 vertices and 36 edges.

Of course, it would be desirable to find a non-computer based proof of
non-semi-transitivity of K(8, 3), e.g. similar to that of non-semi-transitivity
of K(6, 2) in Theorem 11, but we were not able to achieve it. We note that
determining if a triangle-free graph is semi-transitive is an NP-hard problem
[7], and presenting all 235 orientations (one edge can be assumed to have any
fixed orientation) and showing a shortcut, or cycle, in each of them is not
feasible for a human. In fact, there is the branching method explained in
Section 4.5 in [9] (also, see [3]) to dramatically decrease the number of cases
to consider while proving that a graph is not semi-transitive. The basic idea
of the method is to avoid branching for those edges for which orientation is
uniquely determined in order to be semi-transitive. However, this method,
being efficient for not so many edges, still leads to too many cases to consider
for S, and thus is rather useless in the situation.

Remark 14. S in Figure 1 is the first explicit example of a triangle-free
non-semi-transitive graph. The existence of such graphs was established in
[6] using Erdős’ theorem (also see [9, Section 4.4]).

4 Semi-transitivity of the complement of Kneser

graphs

Theorem 15. For n ≤ 2k, K(n, k) is semi-transitive.

Proof. Clearly, if n < 2k, then K(n, k) is a complete graph (no pair of k-
subsets is disjoint), and thus it is semi-transitive. On the other hand, if
n = 2k, then K(n, k) is a complete graph with a perfect matching removed
(each non-edge is formed by a k-subset and its complement). Label K(2k, k)
so that the non-edges are formed by the vertices 2i− 1 and 2i for 1 ≤ i ≤ k
and let x =

(

n
k

)

. Then, the word 1234 · · · (x−1)x2143 · · · x(x−1) represents

K(2k, k), and by Theorem 8, K(2k, k) is semi-transitive.

Lemma 16. For k ≥ 4, we have
(

2k
k−1

)

+ k < 1
2

(

2k+1
k

)

− 2.

Proof. Using
(2k+1

k

)

=
(2k
k

)

+
( 2k
k−1

)

, we need to prove that

1

2

(

2k

k − 1

)

+ k <
1

2

(

2k

k

)

− 2, or

9



(2k)!

(k − 1)!(k + 1)!
+ 2k <

(2k)!

k!k!
− 4, or

k(2k)! + 2kk!(k + 1)! < (k + 1)(2k)! − 4k!(k + 1)! or

(2k + 4)k!(k + 1)! < (2k)!.

The last statement can be proved by induction on k with the easy to check
base case of k = 4. Indeed, using the induction hypothesis, we have

(2(k + 1))! = (2k + 2)(2k + 1)(2k)! > (2k + 2)(2k + 1)(2k + 4)k!(k + 1)!

> (2k + 6)(k + 1)!(k + 2)!

where the last inequality follows from the easy to see, for k ≥ 1, inequality

(2k + 2)(2k + 1)(2k + 4) > (2k + 6)(k + 2)(k + 1),

or 6k3 + 16k2 + 6k − 4 > 0.

Theorem 17. For k ≥ 2, the graph K(2k + 1, k) is not semi-transitive.

Proof. For k = 2, we note that K(5, 2) is the line graph of K5, and it is
proved in [10] to be non-word-representable, and thus, K(5, 2) is not semi-
transitive by Theorem 8.

Let k = 3, and suppose that K(7, 3) admits a semi-transitive orientation.
Fix such an orientation. By Theorem 5, the chromatic number of K(7, 3) is
18, and thus, by Theorem 1, K(7, 3) contains a directed path X1 → X2 →
· · · → X18. Moreover, by Theorem 4, the largest clique in K(7, 3) is of size
15, and thus if X1 → Xi is an edge for i ∈ {16, 17, 18}, X1 → Xi would
be the shortcutting edge for the long path X1 → X2 → · · · → Xi (the
graph induced by X1, X2, . . . ,Xi cannot be transitive as that would mean
that K(7, 3) has a clique of size > 15). Therefore, X1 is not connected to
X16, X17 and X18, so that if X1 = 123 (without loss of generality), then
X16, X17 and X18 are formed using the elements in {4, 5, 6, 7}. Without
loss of generality, assume that X2 involves the element 4. Since at least one
of X17 and X18 must involve 4, say Xm, where m ∈ {17, 18}, X2 → Xm

must be the shortcutting edge with the long path X2 → X3 → · · · → Xm.
Contradiction. Thus, K(7, 3) is not semi-transitive.

Finally, let k ≥ 4 and suppose that K(2k+1, k) admits a semi-transitive
orientation. Fix such an orientation. By Theorem 5, the chromatic number

of K(2k + 1, k) is t =
⌈

1
2

(2k+1
k

)

⌉

and thus, by Theorem 1, K(2k + 1, k)

contains a directed path X1 → X2 → · · · → Xt. Moreover, by Theorem 4,
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the largest clique in K(2k + 1, k) is of size s =
(

2k
k−1

)

. Thus, X1 cannot be
connected to Xi for s+1 ≤ i ≤ t, and the number of such Xis cannot exceed
((2k+1)−k

k

)

= k + 1 (the k elements used in X1 are not available for Xis).
But then, we must have the following inequality

t− (s+ 1) + 1 ≤ k + 1 ⇒

⌈

1

2

(

2k + 1

k

)⌉

−

(

2k

k − 1

)

≤ k + 1 ⇒

1

2

(

2k + 1

k

)

− 1−

(

2k

k − 1

)

≤ k + 1,

which contradicts Lemma 16. Thus, K(2k + 1, k) is not semi-transitively
orientable for k ≥ 4.

As an immediate corollary to Theorems 15 and 17 and Lemma 10, we
have the following result.

Theorem 18. The complement graph K(n, k) of K(n, k) is semi-transitive
if and only if n ≤ 2k.

Proof. By Theorem 15, K(n, k) is semi-transitive if n ≤ 2k. Now, suppose
that n > 2k. Since K(2k + 1, k) is an induced subgraph in K(n, k) by
Lemma 10, and K(2k + 1, k) is non-semi-transitive by Theorem 17, K(n, k)
is also non-semi-transitive.

5 Concluding remarks

In this paper, we show that for n ≥ 15k− 24, K(n, k) is not semi-transitive,
while for k ≤ n ≤ 2k+1, K(n, k) is semi-transitive. Also, we have used com-
putations to show that the triangle-free graph K(8, 3) is not semi-transitive.
Moreover, we have completely characterized semi-transitivity of the comple-
ment graph K(n, k) by showing that K(n, k) is semi-transitive if and only
if n ≥ 2k. We conclude the paper with the following open problems.

• Give a non-computer based proof of non-semi-transitivity of K(8, 3).

• More generally, is K(2k + 2, k) non-semi-transitive for any k ≥ 3? If
that would be the case, then we would complete the classification of
semi-transitive Kneser graphs by Lemma 10 and Theorems 11 and 13,
namely, that would imply that a Kneser graph is semi-transitive if and
only if it is 3-colourable.
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• Are there any smaller triangle-free non-semi-transitive graphs (by the
number of vertices and/or the number of edges) than the graph S in
Figure 1? Possible candidates for such a graph could be some sub-
graphs of K(8, 3), which could then also help to prove rigorously non-
semi-transitivity of K(8, 3) (the fewer than 36 edges in such a graph
could possibly be handled by the branching method in [9, Section
4.5]). As a relevant observation to searching for candidates here, note
that triangle-free planar graphs are always semi-transitive as they are
3-colorable [6].
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& North-Holland, Amsterdam, 1975, pp. 91–108.

[3] A. Collins, S. Kitaev, V. Lozin. New results on word-representable
graphs. Discr. Appl. Math. 216 (2017) 136–141.
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