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STRONGLY REPRESENTABLE ATOM STRUCTURES
OF RELATION ALGEBRAS

ROBIN HIRSCH AND IAN HODKINSON

(Communicated by Carl G. Jockusch, Jr.)

Abstract. A relation algebra atom structure α is said to be strongly rep-
resentable if all atomic relation algebras with that atom structure are rep-
resentable. This is equivalent to saying that the complex algebra Cmα is a
representable relation algebra. We show that the class of all strongly repre-
sentable relation algebra atom structures is not closed under ultraproducts and
is therefore not elementary. This answers a question of Maddux (1982).

Our proof is based on the following construction. From an arbitrary undi-
rected, loop-free graph Γ, we construct a relation algebra atom structure α(Γ)
and prove, for infinite Γ, that α(Γ) is strongly representable if and only if the
chromatic number of Γ is infinite. A construction of Erdös shows that there
are graphs Γr (r < ω) with infinite chromatic number, with a non-principal
ultraproduct

∏
D Γr whose chromatic number is just two. It follows that α(Γr)

is strongly representable (each r < ω) but
∏
D(α(Γr)) is not.

1. Introduction

Representability is difficult to characterise for relation algebras. Monk proved
that no finite set of first-order sentences can define the class RRA of representable
relation algebras [21]. Various strengthenings of this result have been obtained [13],
[1], [25]. Furthermore, the representability problem is known to be undecidable for
finite relation algebras [11]. On the other hand, representability is quite easily
characterised for boolean algebras: every field of sets is a boolean algebra, and by
Stone’s theorem, every boolean algebra can be represented as a field of sets.

For atomic relation algebras A (where every non-zero element is above some
minimal, non-zero element or atom) the non-boolean operations (identity, converse
and composition) are determined by the atom structure AtA of the relation algebra.
This atom structure tells which atoms lie under the identity, which atoms are
converses of each other, and what the composition of any two atoms is. It is
possible to recover the behaviour of arbitrary elements of the relation algebra from
the atom structure, using the fact that converse and composition are completely
additive. The only thing the atom structure does not determine is the boolean
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structure: it is possible to have two atomic relation algebras with the same atom
structure but certain suprema of sets of atoms are present in one yet not in the
other.

The fact that representability is so difficult to pin down for relation algebras
but so easy with boolean algebras, together with the informal equation ‘relation
algebra = boolean algebra + atom structure’ just established, might lead one to
conclude that the atom structure alone determines whether an atomic relation
algebra is representable or not. However, this turns out to be false. In [12], two
atomic relation algebras with the same atom structure were constructed: one is
representable while the other is not. (See §6.1 below for a simple proof.)

So there are two notions of representability for relation algebra atom structures:
an atom structure is weakly representable if at least one atomic representable rela-
tion algebra has that atom structure, and it is strongly representable if every atomic
relation algebra with that atom structure is representable. Since representability
is preserved under subalgebras, and every atomic relation algebra embeds into the
complex algebra of its atom structure (the relation algebra with this atom structure
whose domain is the full power set of the set of atoms), it is quite easy to see that
an atom structure is strongly representable if and only if its complex algebra is
representable. Similarly, there is a minimal atomic relation algebra with a given
atom structure, called the term algebra: it is the subalgebra of the complex algebra
generated by the atoms. An atom structure is weakly representable if and only if
its term algebra is representable.

By analogy with RRA, it is of interest to provide intrinsic characterisations of the
classes of weakly and strongly representable atom structures. The class WRAS of
weakly representable atom structures turns out to be elementary: in [24], Venema
showed how to take an equational axiomatisation of RRA (e.g., from [15]) and
translate the equations into first-order sentences in the language of atom structures.
The resulting sentences hold in an atom structure if and only if the equations hold in
its term algebra. This provides a first-order axiomatisation of WRAS (or, in another
common notation, ‘AtRRA’, the class of atom structures of atomic, representable
relation algebras).1 It was remarked in [12] that no finite first-order axiomatisation
exists, nor one by a sentence of the finite-variable infinitary logic Lω∞ω.

But the class of strongly representable atom structures (SRAS, or ‘StrRRA’)
seems harder to handle, and indeed, not much seems to be known about this class.
The following is known. It is easily seen that a finite atom structure is weakly
representable if and only if it is strongly representable. Again, SRAS is not finitely
axiomatisable or Lω∞ω-axiomatisable [12]. There is also a connection between SRAS
and the class CRAS of completely representable atom structures — the atom struc-
tures of relation algebras that have complete representations, respecting arbitrary
suprema wherever they exist in the algebra. Any such relation algebra is atomic
and has an ‘atomic’ representation [9, Theorem 7]; such a representation induces a
representation of the complex algebra of its atom structure, so the atom structure

1Venema’s argument was given for an arbitrary completely additive variety V of boolean al-
gebras with operators. The resulting axiomatisation of AtV is recursive if the initial equational
axiomatisation of V is recursive.

It is historically of interest that Lyndon followed approximately the reverse procedure to get his
equational axiomatisation of RRA [15]. He started from the ‘Lyndon conditions’ of [14] (see §6.3),
and, using what he called ‘polarisation’, translated them into equational conditions which, when
applied to an algebra, assert roughly that its canonical extension satisfies the Lyndon conditions.
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must be strongly representable. However, examples of Maddux [16, Examples 23,
p. 154ff] yield strongly representable atom structures that are not completely repre-
sentable. (See §6.2 for another example.) Using the result of [12] mentioned above,
we conclude that CRAS ⊂ SRAS ⊂WRAS.

Maddux asked [17, Problem 2.3] whether SRAS is an elementary class. In uni-
versal algebra, the standard way of proving that a class is or is not elementary is
by the following theorem (see [3, Theorems 4.1.12 and 6.1.15] or [23]).

Theorem 1 (Keisler–Shelah). A class of structures in some first-order signature
is elementary if and only if the class is closed under isomorphism, ultraroots, and
ultraproducts.

So to prove that a class is non-elementary, it suffices to show that it is not
closed under either or both ultraproducts and ultraroots. Conversely, it will im-
mediately be asked about any non-elementary class whether it fails to be closed
under ultraproducts, ultraroots, or both. Consider for example the class CRAS. In
[9, Theorem 24], an atomic relation algebra was constructed that has no complete
representation but is elementarily equivalent to one with a complete representation.
This proved that the class of relation algebras with complete representations is not
elementary. It is not too hard to show that this class is closed under ultraproducts;
this can be done quite easily by showing that it is a PC∆ or pseudo-elementary
class [3, Exercise 4.1.17, Corollary 6.1.16]. Hence, it is not closed under ultraroots.
Since the atom structure of an atomic relation algebra is first-order interpretable
in the algebra, the operation of taking the atom structure commutes with taking
ultraroots. Hence, CRAS is not closed under ultraroots either, so it is not elemen-
tary.

However the reader who wishes to prove that SRAS is not elementary by that
method will not get very far.

Theorem 2. SRAS is closed under ultraroots.2

Proof. Suppose that α is an atom structure that is not strongly representable. So
there is an atomic relation algebra A with atom structure α that is not repre-
sentable. If D is any ultrafilter on a set I, then the ultrapower AI/D is an atomic
relation algebra with atom structure αI/D. As A is elementarily equivalent to
AI/D, and RRA is a variety, AI/D is not representable. Hence αI/D = At(AI/D)
is not strongly representable.

So we might hope to prove that SRAS is an elementary class by showing that it
is closed under ultraproducts, as follows. Let αi (i ∈ I) be strongly representable
atom structures. This means that the complex algebras Cm(αi) are representable.
Since RRA is elementary, it follows that any ultraproduct

∏
D Cm(αi) is also rep-

resentable. However, the proof may not be completed, because
∏
D Cm(αi) may

not be isomorphic to Cm(
∏
D αi) so we cannot conclude that

∏
D αi is strongly

representable.
In this paper, we provide a negative answer to Maddux’s question, proving (in

Corollary 13) the following:

Theorem 3. SRAS is not an elementary class.

2A generalisation of this result to arbitrary varieties of Boolean algebras with operators is
proved in [7, Theorem 3.8.1(1)].
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We proceed by constructing a sequence of strongly representable atom structures
αr (r < ω) whose ultraproduct

∏
D αr is not strongly representable. The construc-

tion makes use of a result of Erdös [5], which provides finite graphs of arbitrarily
high chromatic number and girth. By taking disjoint unions of them, we obtain an
infinite graph Γr, for each r < ω, that cannot be coloured by any finite number
of colours but whose ‘small’ subgraphs of size < r have no cycles and so can be
coloured by just two colours. It follows that a non-principal ultraproduct of the Γr
has no cycles at all and is therefore 2-colourable.

From a graph Γ, we construct an atom structure α(Γ) and show, for infinite Γ,
that α(Γ) is strongly representable if and only if there is no finite colouring of Γ.
So for each r < ω, α(Γr) is strongly representable but

∏
D α(Γr) is not, for any

non-principal ultrafilter D over ω.
As is often the case, the use of ultraproducts can be easily replaced by first-order

compactness.
By [7, Theorem 3.8.4], SRAS is elementary iff it is closed under elementary

equivalence, iff it is closed under ultrapowers, iff it is closed under ultraproducts.
Hence, SRAS has none of these closure properties.

We assume a basic knowledge of relation algebras, as can be found in [19] for
example. To make the paper self-contained, we recall some elementary definitions
and results in section 3.

2. Graphs and colourings

Let Γ = (V,E) be an undirected graph (V 6= ∅ is the set of vertices or nodes,
and E, the set of edges, is an irreflexive, symmetric binary relation on V ). Let
C be a non-empty set (of ‘colours’). X ⊆ V is said to be an independent set if
(x, y) /∈ E for all x, y ∈ X . A function f : V → C is called a C-colouring of Γ if
(v, w) ∈ E ⇒ f(v) 6= f(w). The chromatic number of Γ, denoted χ(Γ), is the size
of the smallest finite set C such that there is a C-colouring of Γ, if such a set exists,
and χ(Γ) = ∞ otherwise. A cycle in Γ is a finite sequence γ = 〈v0, v1, . . . , vk−1〉
of distinct nodes (some k ≥ 3) such that (v0, v1), . . . , (vk−2, vk−1), (vk−1, v0) ∈ E.
The length of such a cycle is k. The girth of Γ, denoted g(Γ), is the length of the
shortest cycle in Γ if Γ has any cycles, and g(Γ) =∞ if not.

Theorem 4 (Erdös, [5]). For all r < ω, there exists a finite graph Gr with χ(Gr) >
r and g(Gr) > r.

A recent presentation of Erdös’ proof of this theorem can be found in [4, Theo-
rem 11.2.2]. Erdös’ proof was radical and was one of the earliest results using the
probabilistic method. The idea is to construct a graph G on n vertices by randomly
choosing to include an edge between two distinct vertices with probability p and
repeating this random choice independently for each pair of distinct vertices in the
graph. For p > 6 lnn

n the probability that G contains an independent set of size n
2r

tends to zero as n tends to infinity.
If p < n

1
r−1, then although there may be cycles of length r or less (short cycles)

in G, we find that the probability that there are at least n
2 short cycles also tends

to zero as n tends to infinity. For large n, it is possible to find a value of p with
6 lnn
n < p < n

1
r−1. With such a value for p, for sufficiently large n, the probability

that G has no independent set of size n
2r and fewer than n

2 short cycles is strictly
positive. It follows that a graph G with both properties exists.
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From each of the short cycles of such a graph G we delete a single node to obtain
a graph H . Clearly, H has no short cycles, so g(H) > r. Also, |H | ≥ n

2 and H has
no independent set of size n

2r . But for any r-colouring of H there must be a set of
at least |H|r ≥

n
2r nodes, all with the same colour. There are no independent sets

in H of this size, so there cannot be such an r-colouring after all. Hence χ(H) > r.

Definition 5. For r < ω, let Γr be a disjoint union
⋃
r≤s<ωGs, where Gs is a

graph, as in Theorem 4, with χ(Gs) > s and g(Gs) > s.

Corollary 6. For all r < ω, Γr is an infinite graph with g(Γr) > r and χ(Γr) =∞.
Furthermore, if D is any non-principal ultrafilter over ω, we have χ(

∏
D(Γr)) = 2.

Proof. The first part of the corollary is clear from the definition of Γr. For the
second part, since the girth of Γr is more than r, Γr does not satisfy the following
sentence σi:

∃x0 . . . ∃xi−1

( ∧
j<k<i

xj 6= xk ∧
∧

j<i−1

E(xj , xj+1) ∧ E(xi−1, x0)
)

for any i with 3 ≤ i ≤ r. Hence Γr |= ¬σi, for 3 ≤ i ≤ r. So let Γ be any
non-principal ultraproduct of the Γr. By  Loś’ theorem, Γ |= ¬σi for all finite
i ≥ 3. Thus, Γ has no cycles, which implies that Γ can be coloured with just two
colours.

Corollary 7. The class N = {Γ : χ(Γ) =∞} is not elementary.

Proof. By Corollary 6, Γr ∈ N, for r < ω, and
∏
D Γr /∈ N. This shows that N is

not closed under ultraproducts and cannot be elementary.

It is easily seen that N is closed under elementary equivalence, so (equivalently)
it is closed under ultraroots and ultrapowers. The complement {graphs Γ : χ(Γ) <
∞} of N is easily seen not to be closed under ultraproducts (e.g., of complete graphs
of arbitrarily large finite size), so it is not elementary either.

3. Atom structures, networks, and games

We recall some elementary definitions and results on relation algebra atom struc-
tures. This material originated in [14] and appeared in the form given below
in [17, Theorem 2.2] and [19, Theorem 37]. A relation algebra atom structure
α = 〈A, Id, ,̆ C〉 consists of a non-empty set A (of atoms), a unary predicate Id
over A (the identity atoms), a unary function ˘ : A→ A, and a ternary relation C
satisfying, for all a, b, c, d, g ∈ A,

Identity: a = b ⇐⇒ ∃e ∈ A(Id(e) ∧ C(a, e, b)),
Peircean law: C(a, b, c)⇒ (C(ă, c, b) ∧C(c, b̆, a)),
Associativity: C(a, b, c) ∧ C(c, d, g)⇒ ∃f ∈ A(C(a, f, g) ∧C(b, d, f)).

If A = 〈A, 0, 1,+,−, 1,
, ,̆ ; 〉 is any atomic relation algebra, we can extract an atom

structure

At(A) = 〈{a ∈ A : ∀x(x < a↔ x = 0)}, Id, ,̆ C〉

whose domain is the set of atoms of A, the identity Id = {atoms e : e ≤ 1,},
converse is the restriction of ˘ to the atoms of A (the converse of a relation algebra
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atom can be proved to be an atom), and the ternary relation C is defined by
C(a, b, c) ⇐⇒ a ; b ≥ c, for all atoms a, b, c.

Conversely, from an atom structure α = 〈A, Id, ,̆ C〉 it is possible to construct a
relation algebra Cm(α) whose domain is the power set of A, with boolean operations
∪ and complement in A, and where the non-boolean operators are defined by

1, = Id,

r̆ = {ă : a ∈ r},
r ; s = {c : ∃a ∈ r, ∃b ∈ s, C(a, b, c)}.

Cm(α) is called the (full) complex algebra over α. In the complex algebra, it is
convenient to identify a set with just one atom in it with the atom itself. Thus, we
write a1 ; a2 instead of the more accurate {a1} ;{a2}, for a1, a2 ∈ A.

The set of forbidden triples of α is (A×A×A) \C. Listing the forbidden triples
is often a useful way of specifying the composition part of an atom structure.

An atom structure α is strongly representable if every atomic relation algebra
whose atom structure is isomorphic to α is representable. Equivalently, Cm(α) is
representable.

Let A be a relation algebra. An A-labelled graph N = (N1, N2) consists of a set
N1 of nodes and a function N2 : N1×N1 → A. An A-labelled graph N = (N1, N2)
is called an (A-)network [10, §3.4] if for all nodes x, y, z ∈ N1:

• N2(x, x) ≤ 1,,
• N2(x, y) ·

(
N2(x, z) ;N2(z, y)

)
6= 0.

Often we drop the subscripts and use N to denote a labelled graph or network, its
set of nodes, and the labelling function, distinguishing the cases by context. So we
write n ∈ N to mean that n is a node of N , and |N | for the cardinality of the set
of nodes. In case of possible confusion we may write nodes(N) for the set N1 of
nodes. Let M and N be A-labelled graphs. We say that M is a refinement of N ,
and we write M ⊇ N , if nodes(M) ⊇ nodes(N) and for all x, y ∈ nodes(N) we
have M(x, y) ≤ N(x, y). The idea is that M carries more information than N .

To test if a relation algebra A is representable, we define a two-player game
Gk(A) (for any k < ω) as in [10, §9.1], played over labelled graphs. The players are
called ∀ and ∃. They construct a sequence

N0 ⊆ N1 ⊆ N2 ⊆ · · · ⊆ Nk

of labelled graphs as follows.

Initial round: In the initial round (round 0), ∀ picks any non-zero element a of
A, and ∃ must respond with the two-node network N0 with nodes x0, y0, say,
and labelling defined by N0(x0, y0) = a, N0(y0, x0) = ă, and N0(x0, x0) =
N0(y0, y0) = 1,.

In round t+ 1, for t < k, suppose Nt has just been played. ∀ picks nodes x, y ∈ Nt
and elements a, b ∈ A. ∃ responds by playing a labelled graph Nt+1 ⊇ Nt such that
nodes(Nt+1) = nodes(Nt) ∪ {z} for some new z /∈ Nt and satisfying either of the
following two conditions, at her choice:

Reject: Nt+1(x, y) = Nt(x, y) · −(a ; b), Nt+1(p, q) = Nt(p, q) for all p, q ∈ Nt
with (p, q) 6= (x, y), Nt+1(z, z) = 1,, and for all edges (p, q) of Nt+1 not yet
mentioned, Nt+1(p, q) = 1.
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Accept: Nt+1(x, y) = Nt(x, y) · (a ; b), Nt+1(p, q) = Nt(p, q) for all p, q ∈ Nt
with (p, q) 6= (x, y), Nt+1(x, z) = a, Nt+1(z, z) = 1,, Nt+1(z, y) = b, and for
all edges (p, q) of Nt+1 not yet mentioned, Nt+1(p, q) = 1.

If for any t ≤ k, the labelled graph Nt is not a network (it fails one of the two
network conditions), then ∀ wins. If every labelled graph in the play is a network,
then ∃ wins. It can be seen by the definition of the game that the labelled graphs
all satisfy the first network condition. So ∀ wins if, in some round, a graph Nt is
played that contains nodes x, y, z such that

(
Nt(x, z) ;Nt(z, y)

)
·Nt(x, y) = 0. Such

a triangle (x, y, z) is said to be inconsistent. If
(
Nt(x, z) ;Nt(z, y)

)
· Nt(x, y) 6= 0,

we say that the triangle (x, y, z) is consistent.

Theorem 8. Let A be a relation algebra. A is representable if and only if ∃ has a
winning strategy in each game Gk(A), for k < ω.

Proof. [10, Proposition 23] proves this for countable A. For arbitrary A, [10, The-
orem 24(2)] shows that ∃’s having a winning strategy in Gk(A) is an elementary
property, defined by a first-order sentence φk. Also, RRA is an elementary class
(a variety). Hence, if A is any relation algebra and C a countable elementary sub-
algebra of A, the following are equivalent: A ∈ RRA; C ∈ RRA; ∃ has a winning
strategy in Gk(C) for all k; C |= φk for all k; A |= φk for all k; ∃ has a winning
strategy in Gk(A) for all k.

Lemma 9. Let k < ω and let A be a relation algebra. If ∀ has a winning strategy
in the game Gk(A), then there is a non-zero element a0 ∈ A and a finite set W of
pairs of elements of A such that his winning strategy selects a0 in round 0 and in
later rounds only ever directs him to choose elements from W .

Proof. Let σ be a fixed (deterministic) winning strategy for ∀. σ determines his
initial choice a0. In each round, ∃ has at most two choices for her moves. Therefore,
there are at most 2k possible plays of Gk(A) in which ∀ uses σ. In each round, ∀ is
directed to choose a pair of elements in his moves. So σ can direct him to choose
at most k × 2k different pairs.

4. The construction

Let Γ be a graph. We define a relation algebra atom structure α(Γ) with atoms 1,

(the sole identity atom) and ri, bi, gi for i ∈ Γ. The non-identity atoms ri, bi, gi are
regarded as coloured red, blue, and green, respectively. All atoms are self-converse
(i.e., ă = a). To define composition on atoms, we list the forbidden triples of atoms
(a, b, c): those such that ¬C(a, b, c), or equivalently, (a ; b) · c = 0. The forbidden
triples are:

(1,
, a, b), (a, 1,

, b), (a, b, 1,) where a 6= b,(A)
(ri, rj , rk), (bi, bj , bk), (gi, gj , gk) where {i, j, k} ⊆ Γ is an independent set.(B)

It is easily checked that α(Γ) meets the conditions of being a relation algebra
atom structure. Therefore, Cm(α(Γ)) is a relation algebra, known colloquially as a
kind of ‘Monk algebra’ (cf. [22]).

For a graph Γ and X ⊆ Γ, we define RX ,BX ,GX ∈ Cm(α(Γ)) to be the sets of all
red, blue, and green atoms, respectively, with indices in X : that is, RX = {ri : i ∈
X}, etc. A non-zero element a of Cm(α(Γ)) is said to be monochromatic if a ≤ 1,,
a ≤ RΓ, a ≤ BΓ, or a ≤ GΓ.
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Theorem 10. If Γ is infinite and χ(Γ) < ∞, then α(Γ) is not strongly repre-
sentable.

Proof. We must show that Cm(α(Γ)) is not representable. Assume for contradiction
that h : Cm(α(Γ)) → A is an isomorphism from Cm(α(Γ)) into a proper relation
algebra A with base set X . We may assume that h(1) = X × X .3 Each h(a)
(a ∈ Cm(α(Γ))) is a binary relation on X , and h respects the relation algebra
operations. In particular,

(1) if a, b ∈ Cm(α(Γ)), then h(a+ b) = h(a) ∪ h(b),
(2) if x, y ∈ X and (x, y) ∈ h(1,), then x = y,
(3) if x0, x1, x2 ∈ X , a, b, c ∈ Cm(α(Γ)), and (x0, x1) ∈ h(a), (x1, x2) ∈ h(b), and

(x0, x2) ∈ h(c), then (a ; b) · c 6= 0.
We know that Γ has a finite colouring, so partition the nodes of Γ into sets

Cj (j < n for some finite n) such that there are no edges within any Cj . Let
Π = {1,

,RCj ,BCj ,GCj : j < n}. Then
∑

Π = 1 in Cm(α(Γ)). As Π is finite,
repeated use of (1) shows that for any x, y ∈ X there is a ∈ Π with (x, y) ∈ h(a).

Since Cm(α(Γ)) is infinite, X must also be infinite. By Ramsey’s theorem, there
are distinct xi ∈ X (i < ω) and a ∈ Π such that (xi, xj) ∈ h(a) for all i < j < ω.
By (2) above, a 6= 1,. By (3), (a ; a) · a 6= 0. But because the Cj are independent
sets and a is monochromatic, it is easily checked using rule (B) of the definition of
α(Γ) that (a ; a) · a = 0. This contradiction completes the proof that Cm(α(Γ)) is
not representable.

Theorem 11. If χ(Γ) =∞, then α(Γ) is strongly representable.

Proof. We show that α(Γ) is strongly representable by showing that ∃ has a winning
strategy in Gk(Cm(α(Γ))) for any finite k.4 Strong representability then follows by
Theorem 8.

Write α for α(Γ). Suppose, for contradiction, that ∃ does not have a winning
strategy in Gk(Cmα), for some finite k. Since finite-length games are determined
[6], it follows that ∀ must have a winning strategy in this game.5 By Lemma 9,
there is non-zero a0 ∈ Cmα and a finite set W of pairs of elements of Cmα such
that his winning strategy picks a0 in round 0 and in later rounds only ever directs
him to choose pairs of elements in W .

We define a finite boolean subalgebra B of the boolean reduct bool(Cmα) of Cmα
in three steps. Start with the finite set

B0 = {1,
, a0,RΓ,BΓ,GΓ} ∪ {a, b, a ; b : (a, b) ∈ W}.

First let B1 be the finite boolean subalgebra of bool(Cmα) generated by B0 (the set
of all unions of intersections of members of B0 and complements of members of B0).

3Note that Cm(α(Γ)) is a simple relation algebra. Hence, if it has any representation, then it
has a square representation h satisfying h(1) = X×X, where X is the base of the representation.

4α(Γ) need not be completely representable, nor need it satisfy the Lyndon conditions of [14]
(see §§6.2–6.3 for specific counter-examples and Theorem 14 for links between these notions). In
[10, §5], we defined a game Gatk (A), for an atomic relation algebra A. This game is similar to
Gk(A) but is played over atomic networks (networks in which each edge is labelled by an atom
of A). If A has a complete representation, then ∃ has a winning strategy in Gatk (A) for all finite
k (though the converse is false), and the latter condition is equivalent to the Lyndon conditions.
So Gatk , though easier to handle than Gk, is not appropriate for Theorem 11.

5It is more convenient for us to deduce a contradiction from a winning strategy for ∀ in this
finite-length game than to prove directly that ∃ has a winning strategy, because we can then apply
Lemma 9 and restrict our attention to just a finite set of elements of the complex algebra.
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Second, let B2 = B1 ∪ {RX ,BX ,GX : RX ∈ B1 or BX ∈ B1 or GX ∈ B1} (copy
monochromatic elements to all colours). Finally, let B be the boolean subalgebra
of bool(Cmα) generated by B2. Observe that
• 1,

, a0 ∈ B, and if (a, b) ∈W , then a, b, (a ; b) ∈ B,
• each atom of B is monochromatic,
• for any X ⊆ Γ, the following are equivalent: RX ∈ B, BX ∈ B, GX ∈ B.
Write AtB for the set of atoms of B. A subset X ⊆ Γ is said to be small if

RX ∈ AtB. Clearly, the small sets form a finite partition of Γ. Since there is no
finite colouring of Γ, there must be some small set S ⊆ Γ such that (i, j) is an
edge of Γ for some i, j ∈ S. Then by rule (B) of the definition of α(Γ), (ri, rj , rl),
(ri, rj , bl), and (ri, rj , gl) are not forbidden triples of atoms of α for any l ∈ Γ. The
same holds with bi, bj and with gi, gj. Hence, by definition of complex algebras,

CS ; CS = 1 in Cmα, whenever C is R, B, or G.(3)

To obtain a contradiction, we will show how ∃ can win Gk(Cmα) when ∀ uses
his supposedly winning strategy. To help her win, she will maintain an auxiliary
network Mt (for each t ≤ k) satisfying the following conditions:
• Mt(e) ∈ AtB for each edge e of Mt,
• if x, y ∈Mt, then Mt(x, y) = 1, if and only if x = y,
• there is a map ′ : nodes(Nt)→ nodes(Mt) such that Mt(x′, y′) ≤ Nt(x, y) for

all x, y ∈ nodes(Nt),
where Nt is the labelled graph in play after round t.

For the initial move (t = 0), ∀ chooses the non-zero element a0 ∈ B. ∃
must respond with a two-node network N0 with distinct nodes x0, y0, say, with
N0(x0, y0) = N0(y0, x0) = a0 (= ă0) and N0(x0, x0) = N0(y0, y0) = 1,. To
define M0, she chooses a∗ ∈ AtB with a∗ ≤ a0. If a∗ = 1,, she defines M0

to be the network with a single node, say x0, with M0(x0, x0) = 1,; she defines
x′0 = y′0 = x0. Otherwise, a∗ ≤ −1,, and ∃ defines M0 to have nodes x0, y0 only,
with M0(x0, y0) = M0(y0, x0) = a∗, and M0(x0, x0) = M0(y0, y0) = 1,. She lets
x′0 = x0 and y′0 = y0. This all meets the conditions above.

Let t < k and assume inductively that ∃ has defined Mt for Nt. We will show
how ∃ can respond in the next round of the game and how she can construct a new
networkMt+1 meeting the above conditions with respect to Nt+1. ∀ plays the round
by choosing nodes x, y ∈ Nt and elements a, b ∈ Cmα according to his strategy.
Note that a, b, a ; b ∈ B. ∃ uses the label Mt(x′, y′) to calculate her response. If
Mt(x′, y′) ≤ −(a ; b), then she rejects his move and plays Nt+1 as specified in the
definition in section 3 of the game Gk, with a new node z. She defines Mt+1 = Mt,
and defines z′ to be any node of Mt (for definiteness, say z′ = x). This preserves
the requirements on M,N .

Otherwise, since Mt(x′, y′) ∈ AtB, we have Mt(x′, y′) ≤ a ; b. ∃ then accepts
∀’s move by playing a labelled graph Nt+1 with a new node z and labelling it as
specified earlier. She now defines Mt+1 meeting the conditions, as follows.

If there is already a node p ∈ Mt with Mt(x′, p) ≤ a and Mt(p, y′) ≤ b, then ∃
can set Mt+1 = Mt and z′ = p. This meets the required conditions on Nt+1,Mt+1.

Otherwise, since a ; b ≥ Mt(x′, y′) ∈ AtB and a, b ∈ B, by additivity of com-
position in Cmα there must be a∗, b∗ ∈ AtB with a∗ ≤ a, b∗ ≤ b, and (a∗ ; b∗) ·
Mt(x′, y′) 6= 0. ∃ chooses such a∗, b∗; it can be checked using standard relation al-
gebra properties that a∗, b∗ 6= 1,, and that if x′ = y′, then a∗ = b∗. Note that a∗, b∗



1828 ROBIN HIRSCH AND IAN HODKINSON

are monochromatic. Choose C from R, B, G of different colour from the colours of
(atoms in) a∗, b∗. ∃ now refines Mt to Mt+1 ⊇Mt by adding a new node, defining
z′ to be that new node, and labelling edges of Mt+1 with atoms of B as follows:

• Mt+1(p, q) = Mt(p, q) for all p, q ∈Mt.
• Mt+1(x′, z′) = Mt+1(z′, x′) = a∗, Mt+1(z′, z′) = 1,, and Mt+1(z′, y′) =
Mt+1(y′, z′) = b∗. This is well-defined if x′ = y′, as a∗ = b∗ in that case.
• For p ∈ nodes(Mt) \ {x′, y′}, ∃ labels Mt+1(p, z′) = Mt+1(z′, p) = CS .

We claim that every triangle (p, q, r) of nodes of the labelled graph Mt+1 is con-
sistent — Mt+1(p, q) ·

(
Mt+1(p, r) ;Mt+1(r, q)

)
6= 0 in Cmα. If p, q, r ∈ Mt, this is

clear inductively, if |{p, q, r}| < 3, it is trivial, and by definition of α and Cmα, the
order of p, q, r is not significant, so we need only consider triangles of distinct nodes
of the form (p, q, z′) for p, q ∈ Mt. We already know (x′, y′, z′) to be consistent,
since (a∗ ; b∗) ·Mt(x′, y′) 6= 0. The labels in any triangle of the form (x′, q, z′) with
q 6= x′, y′ are c,CS , a∗ for some c ∈ AtB \ {1,}; because C is not the colour of a∗,
the triangle must be consistent. The case of (y′, q, z′) is similar. Finally, if (p, q, z′)
is a triangle with p, q ∈ Mt \ {x, y}, we have Mt+1(p, z′) = Mt+1(q, z′) = CS and
Mt+1(p, q) = c for some c ∈ AtB. By (3) above, c ≤ CS ; CS , whence (p, q, z′) is
consistent. This proves the claim.

By the claim, Mt+1 is a network. We have arranged that every edge of Mt+1 is
labelled by an element of AtB beneath the corresponding label in Nt+1. Thus, the
inductive conditions on Mt are maintained for another round.

It follows that each labelled graph Nt (t ≤ k) is a network. To see this, let
x, y, z ∈ Nt. Then Nt(x, z) ;Nt(z, y) ·Nt(x, y) ≥Mt(x′, z′) ;Mt(z′, y′) ·Mt(x′, y′) 6=
0. Thus, ∃ never loses, which is a contradiction.

The proof yields the following corollary:

Corollary 12. Let Γ be an infinite graph and A a subalgebra of Cm(α(Γ)) such
that α(Γ) ⊆ A and RΓ,BΓ,GΓ ∈ A. Suppose that whenever E0, . . . , En is a finite
partition of Γ, C is R, B, or G, and CEi ∈ A for all i ≤ n, then some Ei is not
independent. Then A is representable.

5. SRAS is not elementary

Theorem 3 follows from:

Corollary 13. SRAS is not closed under ultraproducts, so it is not an elementary
class.

Proof. For r < ω let Γr be an infinite graph, as in Definition 5, with g(Γr) > r and
χ(Γr) =∞ (Corollary 6). Then the atom structure α(Γr) is strongly representable
by Theorem 11. Consider a non-principal ultraproduct

∏
D α(Γr) over ω. It is easily

seen that this is isomorphic to α(
∏
D Γr). By Corollary 6,

∏
D Γr is two-colourable,

so by Theorem 10, α(
∏
D Γr) is not strongly representable. Hence SRAS is not

closed under ultraproducts, and, by Theorem 1, not elementary.

6. Inclusions between classes

We end with some remarks and open questions concerning classes of atom struc-
tures related to SRAS.
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6.1. Weakly but not strongly representable atom structures. Since SRAS ⊆
WRAS and WRAS is elementary, Corollary 13 gives another proof of a result in [12,
§6.2] that SRAS 6= WRAS. Indeed, regarding the integers Z as a graph with edges
between consecutive integers, we claim that α(Z) ∈ WRAS\SRAS (see §4 for α(Z)).
For this, first note that α(Z) /∈ SRAS by Theorem 10, since χ(Z) = 2. Now, for the
other half, observe that the term algebra τ of α(Z) is the subalgebra of Cm(α(Z))
consisting of all elements a such that for every colour C (R, B, or G), a∩CZ is finite or
co-finite in CZ. So if E0, . . . , En forms a finite partition of Z, and CE0 , . . . ,CEn ∈ τ ,
then one of the Ei is cofinite in Z and so contains an edge of Z. By Corollary 12,
τ is representable, so α(Z) ∈WRAS.6

[12] also gives ‘n-dimensional’ results of this kind, for the variety RCAn of rep-
resentable n-dimensional cylindric algebras. It is shown that StrRCAn ⊂ AtRCAn
for all finite n ≥ 3 (see §1 above for the notations Str, At). See Problem 1 below.
The argument of [12, §6.2] also works for the varieties RAn and SRaCAn of relation
algebras (see [18, 20] for information about these), showing that StrRAn ⊂ AtRAn
and StrSRaCAn ⊂ AtSRaCAn for finite n ≥ 7. A slightly modified argument
also covers the case n = 6; for n ≤ 4 it is false; and the case n = 5 remains
open. It follows that these varieties are not closed under completions, and are not
Sahlqvist-axiomatisable [25].

6.2. Completely representable atom structures. We mentioned in section 1
that atom structures devised by Maddux [16, Examples 23] can be adapted to
show that CRAS ⊂ SRAS. This can also be proved using Corollary 13. As we said
in section 1, CRAS ⊆ SRAS, and CRAS is pseudo-elementary and so closed under
ultraproducts. Since SRAS is not closed under ultraproducts, the inclusion is strict.

Indeed, we can exhibit a specific example: if Γ is a graph with g(Γ) > 15
and χ(Γ) = ∞ (Corollary 6), then α(Γ) ∈ SRAS \ CRAS. We can see this as
follows. Theorem 11 shows that α(Γ) ∈ SRAS. To see that α(Γ) /∈ CRAS, suppose
otherwise, for contradiction. A complete representation of a relation algebra with
atom structure α(Γ) yields an infinite set X and a map λ : X × X → α(Γ) such
that for all x, y, z ∈ X we have λ(x, y) = 1, ⇐⇒ x = y, λ(x, y) = λ(y, x),
and (λ(x, y), λ(y, z), λ(x, z)) is a consistent triple in α(Γ) (cf. [9, Theorem 7]). By
Ramsey’s theorem we may take distinct xi ∈ X (i < 6) such that for some colour c
(i.e., r, b, or g), λ(xi, xj) = caij for some aij ∈ Γ whenever i, j < 6 are distinct. Let
∆ be the induced subgraph of Γ with nodes {aij : i < j < 6}. Since |∆| ≤ 15 < g(Γ),
∆ is 2-colourable and we can partition its nodes into sets D0, D1, neither of which
contain any edges of Γ. Since any 2-colouring of the edges of a complete graph of
size 6 has a monochromatic triangle, there are distinct i, j, k < 6 and d < 2 such
that aij , ajk, aik ∈ Dd. So {aij , ajk, aik} is an independent set in Γ. But then,
(λ(xi, xj), λ(xj , xk), λ(xi, xk)) = (caij , cajk , caik) is inconsistent, a contradiction.

6.3. Lyndon conditions. Let LC be the class of atom structures of atomic relation
algebras satisfying the ‘Lyndon conditions’ (first-order sentences given in [14] and
axiomatising the representable relation algebras over finite relation algebras). All
quantifiers in the Lyndon conditions are relativised to atoms, so they are essentially
first-order conditions on relation algebra atom structures. Hence, LC is elementary.
Now an arbitrary atomic relation algebra is elementarily equivalent to a completely

6Alternatively, show that ∃ has a winning strategy in the game Gatω (τ+) of [10, §5], where τ+

is the canonical extension of τ .
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representable relation algebra (so is itself representable) iff it satisfies all the Lyndon
conditions [9, Theorem 20]. Hence, CRAS ⊆ LC ⊆ SRAS. Since LC is elementary,
and, as seen in section 1 and Corollary 13, CRAS and SRAS are not, both inclusions
are strict.

An example of an atom structure in LC \ CRAS is given in [9, Theorem 21].
For an explicit example of an atom structure in SRAS \ LC, take a graph Γ with
χ(Γ) =∞ and g(Γ) > 15. If n is large enough so that any 3-colouring of the edges
of a graph of size n must contain six nodes such that all the edges between the
six have the same colour, then the argument of §6.2 shows that α(Γ) fails the nth
Lyndon condition. By Theorem 11, α(Γ) ∈ SRAS \ LC.

6.4. First-order algebras. For a relation algebra atom structure α, the first-
order algebra over α is the subalgebra of Cmα consisting of all sets of atoms that
are first-order definable with parameters in α — that is, sets of the form {a ∈ α :
α |= ϕ(a, b̄)} for some first-order formula ϕ(x, ȳ) of the signature of α and some
tuple b̄ of elements of α. It can be checked that these sets indeed form a subalgebra
of Cmα.

Let FO denote the class of relation algebra atom structures whose first-order
algebra is representable.7 Evidently, FO satisfies SRAS ⊆ FO ⊆ WRAS. FO can
be shown to be elementary by the argument of [24], or by using Theorem 1; so by
Corollary 13, the first inclusion is proper. Indeed, an Ehrenfeucht–Fräıssé game
argument will establish that the first-order algebra of the atom structure α(Z) of
§6.1 is the same as its term algebra, so that α(Z) ∈ FO \ SRAS. To see that the
second inclusion is also proper, let Γ consist of ω disjoint copies of the three-node
graph with nodes 0, 1, 2, and edges 0–1 and 1–2 only. As Γ has a first-order-
definable 2-colouring (nodes can be coloured according to their degree: 1 or 2), and
Γ is interpretable in α(Γ), the argument of Theorem 10 shows that the first-order
algebra over α(Γ) is not representable, so α(Γ) /∈ FO. However, the term algebra
over α(Γ) consists of all subsets S of α(Γ) such that each of RΓ ∩ S, BΓ ∩ S and
GΓ ∩S is finite or cofinite in RΓ,BΓ,GΓ, respectively. The term algebra can now be
shown to be representable by an argument similar to that of §6.1. So α(Γ) ∈ WRAS.

6.5. Summary of inclusions. We conclude from these remarks that

Theorem 14. CRAS ⊂ LC ⊂ SRAS ⊂ FO ⊂ WRAS, the elementary classes being
underlined.

We end with a problem.

Problem 1. Let 3 ≤ n. Can the results of the present paper be extended to prove
that the class StrRCAn of strongly representable n-dimensional cylindric algebra
atom structures is not elementary? (Cf. [9, Theorem 34] for a proof that the class
of completely representable n-dimensional cylindric algebras is not elementary for
n ≥ 3.) Note from [8, Theorem 3.2.11] that with infinitely many dimensions,
every semi-simple n-dimensional cylindric algebra is representable, but there is no
discriminator so not every cylindric algebra is semi-simple.
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