334 research outputs found

    Non-homogeneous polygonal Markov fields in the plane: graphical representations and geometry of higher order correlations

    Full text link
    We consider polygonal Markov fields originally introduced by Arak and Surgailis (1989). Our attention is focused on fields with nodes of order two, which can be regarded as continuum ensembles of non-intersecting contours in the plane, sharing a number of features with the two-dimensional Ising model. We introduce non-homogeneous version of polygonal fields in anisotropic enviroment. For these fields we provide a class of new graphical constructions and random dynamics. These include a generalised dynamic representation, generalised and defective disagreement loop dynamics as well as a generalised contour birth and death dynamics. Next, we use these constructions as tools to obtain new exact results on the geometry of higher order correlations of polygonal Markov fields in their consistent regime.Comment: 54 page

    Decidability Results for the Boundedness Problem

    Full text link
    We prove decidability of the boundedness problem for monadic least fixed-point recursion based on positive monadic second-order (MSO) formulae over trees. Given an MSO-formula phi(X,x) that is positive in X, it is decidable whether the fixed-point recursion based on phi is spurious over the class of all trees in the sense that there is some uniform finite bound for the number of iterations phi takes to reach its least fixed point, uniformly across all trees. We also identify the exact complexity of this problem. The proof uses automata-theoretic techniques. This key result extends, by means of model-theoretic interpretations, to show decidability of the boundedness problem for MSO and guarded second-order logic (GSO) over the classes of structures of fixed finite tree-width. Further model-theoretic transfer arguments allow us to derive major known decidability results for boundedness for fragments of first-order logic as well as new ones

    Courcelle's Theorem - A Game-Theoretic Approach

    Get PDF
    Courcelle's Theorem states that every problem definable in Monadic Second-Order logic can be solved in linear time on structures of bounded treewidth, for example, by constructing a tree automaton that recognizes or rejects a tree decomposition of the structure. Existing, optimized software like the MONA tool can be used to build the corresponding tree automata, which for bounded treewidth are of constant size. Unfortunately, the constants involved can become extremely large - every quantifier alternation requires a power set construction for the automaton. Here, the required space can become a problem in practical applications. In this paper, we present a novel, direct approach based on model checking games, which avoids the expensive power set construction. Experiments with an implementation are promising, and we can solve problems on graphs where the automata-theoretic approach fails in practice.Comment: submitte
    corecore