6,770 research outputs found

    Hamilton cycles, minimum degree and bipartite holes

    Full text link
    We present a tight extremal threshold for the existence of Hamilton cycles in graphs with large minimum degree and without a large ``bipartite hole`` (two disjoint sets of vertices with no edges between them). This result extends Dirac's classical theorem, and is related to a theorem of Chv\'atal and Erd\H{o}s. In detail, an (s,t)(s, t)-bipartite-hole in a graph GG consists of two disjoint sets of vertices SS and TT with ∣S∣=s|S|= s and ∣T∣=t|T|=t such that there are no edges between SS and TT; and α~(G)\widetilde{\alpha}(G) is the maximum integer rr such that GG contains an (s,t)(s, t)-bipartite-hole for every pair of non-negative integers ss and tt with s+t=rs + t = r. Our central theorem is that a graph GG with at least 33 vertices is Hamiltonian if its minimum degree is at least α~(G)\widetilde{\alpha}(G). From the proof we obtain a polynomial time algorithm that either finds a Hamilton cycle or a large bipartite hole. The theorem also yields a condition for the existence of kk edge-disjoint Hamilton cycles. We see that for dense random graphs G(n,p)G(n,p), the probability of failing to contain many edge-disjoint Hamilton cycles is (1−p)(1+o(1))n(1 - p)^{(1 + o(1))n}. Finally, we discuss the complexity of calculating and approximating α~(G)\widetilde{\alpha}(G)

    Towards obtaining a 3-Decomposition from a perfect Matching

    Full text link
    A decomposition of a graph is a set of subgraphs whose edges partition those of GG. The 3-decomposition conjecture posed by Hoffmann-Ostenhof in 2011 states that every connected cubic graph can be decomposed into a spanning tree, a 2-regular subgraph, and a matching. It has been settled for special classes of graphs, one of the first results being for Hamiltonian graphs. In the past two years several new results have been obtained, adding the classes of plane, claw-free, and 3-connected tree-width 3 graphs to the list. In this paper, we regard a natural extension of Hamiltonian graphs: removing a Hamiltonian cycle from a cubic graph leaves a perfect matching. Conversely, removing a perfect matching MM from a cubic graph GG leaves a disjoint union of cycles. Contracting these cycles yields a new graph GMG_M. The graph GG is star-like if GMG_M is a star for some perfect matching MM, making Hamiltonian graphs star-like. We extend the technique used to prove that Hamiltonian graphs satisfy the 3-decomposition conjecture to show that 3-connected star-like graphs satisfy it as well.Comment: 21 pages, 7 figure

    A Distributed algorithm to find Hamiltonian cycles in Gnp random graphs

    Get PDF
    In this paper, we present a distributed algorithm to find Hamiltonian cycles in random binomial graphs Gnp. The algorithm works on a synchronous distributed setting by first creating a small cycle, then covering almost all vertices in the graph with several disjoint paths, and finally patching these paths and the uncovered vertices to the cycle. Our analysis shows that, with high probability, our algorithm is able to find a Hamiltonian cycle in Gnp when p_n=omega(sqrt{log n}/n^{1/4}). Moreover, we conduct an average case complexity analysis that shows that our algorithm terminates in expected sub-linear time, namely in O(n^{3/4+epsilon}) pulses.Postprint (published version

    Routing and broadcasting in two-dimensional linear congruential graphs of degree four

    Get PDF
    "In this thesis, we consider the problems of routing and broadcasting in 2-D LC graphs of degree 4 in which f1 generates a Hamiltonian cycle, and f2 generates a few disjoint cycles.

    2-factors with k cycles in Hamiltonian graphs

    Get PDF
    A well known generalisation of Dirac's theorem states that if a graph GG on n≥4kn\ge 4k vertices has minimum degree at least n/2n/2 then GG contains a 22-factor consisting of exactly kk cycles. This is easily seen to be tight in terms of the bound on the minimum degree. However, if one assumes in addition that GG is Hamiltonian it has been conjectured that the bound on the minimum degree may be relaxed. This was indeed shown to be true by S\'ark\"ozy. In subsequent papers, the minimum degree bound has been improved, most recently to (2/5+ε)n(2/5+\varepsilon)n by DeBiasio, Ferrara, and Morris. On the other hand no lower bounds close to this are known, and all papers on this topic ask whether the minimum degree needs to be linear. We answer this question, by showing that the required minimum degree for large Hamiltonian graphs to have a 22-factor consisting of a fixed number of cycles is sublinear in n.n.Comment: 13 pages, 6 picture

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio
    • …
    corecore