287 research outputs found

    Disentangling Factors of Variation with Cycle-Consistent Variational Auto-Encoders

    Full text link
    Generative models that learn disentangled representations for different factors of variation in an image can be very useful for targeted data augmentation. By sampling from the disentangled latent subspace of interest, we can efficiently generate new data necessary for a particular task. Learning disentangled representations is a challenging problem, especially when certain factors of variation are difficult to label. In this paper, we introduce a novel architecture that disentangles the latent space into two complementary subspaces by using only weak supervision in form of pairwise similarity labels. Inspired by the recent success of cycle-consistent adversarial architectures, we use cycle-consistency in a variational auto-encoder framework. Our non-adversarial approach is in contrast with the recent works that combine adversarial training with auto-encoders to disentangle representations. We show compelling results of disentangled latent subspaces on three datasets and compare with recent works that leverage adversarial training

    Neural Face Editing with Intrinsic Image Disentangling

    Full text link
    Traditional face editing methods often require a number of sophisticated and task specific algorithms to be applied one after the other --- a process that is tedious, fragile, and computationally intensive. In this paper, we propose an end-to-end generative adversarial network that infers a face-specific disentangled representation of intrinsic face properties, including shape (i.e. normals), albedo, and lighting, and an alpha matte. We show that this network can be trained on "in-the-wild" images by incorporating an in-network physically-based image formation module and appropriate loss functions. Our disentangling latent representation allows for semantically relevant edits, where one aspect of facial appearance can be manipulated while keeping orthogonal properties fixed, and we demonstrate its use for a number of facial editing applications.Comment: CVPR 2017 ora

    Learning Disentangled Representations with Reference-Based Variational Autoencoders

    Get PDF
    Learning disentangled representations from visual data, where different high-level generative factors are independently encoded, is of importance for many computer vision tasks. Solving this problem, however, typically requires to explicitly label all the factors of interest in training images. To alleviate the annotation cost, we introduce a learning setting which we refer to as "reference-based disentangling". Given a pool of unlabeled images, the goal is to learn a representation where a set of target factors are disentangled from others. The only supervision comes from an auxiliary "reference set" containing images where the factors of interest are constant. In order to address this problem, we propose reference-based variational autoencoders, a novel deep generative model designed to exploit the weak-supervision provided by the reference set. By addressing tasks such as feature learning, conditional image generation or attribute transfer, we validate the ability of the proposed model to learn disentangled representations from this minimal form of supervision

    Hyperprior Induced Unsupervised Disentanglement of Latent Representations

    Full text link
    We address the problem of unsupervised disentanglement of latent representations learnt via deep generative models. In contrast to current approaches that operate on the evidence lower bound (ELBO), we argue that statistical independence in the latent space of VAEs can be enforced in a principled hierarchical Bayesian manner. To this effect, we augment the standard VAE with an inverse-Wishart (IW) prior on the covariance matrix of the latent code. By tuning the IW parameters, we are able to encourage (or discourage) independence in the learnt latent dimensions. Extensive experimental results on a range of datasets (2DShapes, 3DChairs, 3DFaces and CelebA) show our approach to outperform the β\beta-VAE and is competitive with the state-of-the-art FactorVAE. Our approach achieves significantly better disentanglement and reconstruction on a new dataset (CorrelatedEllipses) which introduces correlations between the factors of variation.Comment: AAAI-201
    • …
    corecore