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Abstract
Learning disentangled representations from visual
data, where different high-level generative factors
are independently encoded, is of importance for
many computer vision tasks. Solving this prob-
lem, however, typically requires to explicitly label
all the factors of interest in training images. To
alleviate the annotation cost, we introduce a learn-
ing setting which we refer to as reference-based
disentangling. Given a pool of unlabelled im-
ages, the goal is to learn a representation where a
set of target factors are disentangled from others.
The only supervision comes from an auxiliary ref-
erence set containing images where the factors
of interest are constant. In order to address this
problem, we propose reference-based variational
autoencoders, a novel deep generative model de-
signed to exploit the weak-supervision provided
by the reference set. By addressing tasks such as
feature learning, conditional image generation or
attribute transfer, we validate the ability of the pro-
posed model to learn disentangled representations
from this minimal form of supervision.

1. Introduction
Natural images are the result of a generative process involv-
ing a large number factors of variation. For instance, the ap-
pearance of a face is determined by the interaction between
many latent variables including the pose, the illumination,
identity, and expression. Given that the interaction between
these underlying explanatory factors is very complex, invert-
ing the generative process is extremely challenging.

From this perspective, learning disentangled representations
where different high-level generative factors are indepen-
dently encoded can be considered one of the most relevant
problems in computer vision (Bengio et al., 2013). For
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instance, these representations can be applied to complex
classification tasks given that features correlated with image
labels can be easily identified. We find another example in
conditional image generation (van den Oord et al., 2016;
Yan et al., 2016), where disentangled representations allow
to manipulate high-level attributes in synthesized images.

Motivation: By coupling deep learning with variational
inference, Variational autoencoders (VAEs) (Kingma &
Welling, 2014) have emerged as a powerful latent variable
model able to learn abstract data representations. How-
ever, VAEs are typically trained in an unsupervised manner
and, they therefore lack a mechanism to impose specific
high-level semantics on the latent space. In order to ad-
dress this limitation, different semi-supervised variants have
been proposed (Kingma et al., 2014; Narayanaswamy et al.,
2017). These approaches, however, require latent factors to
be explicitly labelled in a training set. These annotations
provide supervision to the model, and allow to disentangle
the labelled variables from the remaining generative factors.
The main drawback of this strategy is that it may require a
significant annotation effort. For instance, if we are inter-
ested in disentangling facial gesture information from face
images, we need to annotate samples according to differ-
ent expression classes. While this is feasible for a reduced
number of basic gestures, natural expressions depend on a
combination of a large number of facial muscle activations
with their corresponding intensities (Ekman & Rosenberg,
1997). Therefore, it is impractical to label all these factors
even in a small subset of training images. In this context,
our main motivation is to explore a novel learning setting
allowing to disentangle specific factors of variation while
minimizing the required annotation effort.

Contributions: We introduce reference-based disentan-
gling. A learning setting in which, given a training set
of unlabelled images, the goal is to learn a representation
where a specific set of generative factors are disentangled
from the rest. For that purpose, the only supervision comes
in the form of an auxiliary reference set containing images
where the factors of interest are constant (see Fig. 1). Differ-
ent from a semi-supervised scenario, explicit labels are not
available for the factors of interest during training. In con-
trast, reference-based disentangling is a weakly-supervised
task, where the reference set only provides implicit informa-
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Figure 1: Examples of reference-based disentangling prob-
lems. Left: Disentangling factors underlying facial expres-
sion. The reference set contains faces with neutral expres-
sion. Right: Disentangling style from digits. The reference
set is composed by digits with a fixed style.

tion about the generative factors that we aim to disentangle.
Note that a collection of reference images is generally easier
to obtain compared to explicit labels of target factors. For
example, it is more feasible to collect a set of faces with a
neutral expression, than to annotate images across a large
range of expression classes or attributes.

The main contributions of our paper are summarized as
follows: (1) We propose reference-based variational autoen-
coders (Rb-VAEs). Different from unsupervised VAEs, our
model is able to impose high-level semantics into the latent
variables by exploiting the weak supervision provided by
the reference set; (2) We identify critical limitations of the
standard VAE objective when used to train our model. To
address this problem, we propose an alternative training pro-
cedure based on recently introduced ideas in the context of
variational inference and adversarial learning; (3) By learn-
ing disentangled representations from minimal supervision,
we show how our framework is able to naturally address
tasks such as feature learning, conditional image generation,
and attribute transfer.

2. Related Work
Deep Generative Models have been extensively explored
to model visual and other types of data. Variational autoen-
coders (Kingma & Welling, 2014) and generative adversarial
networks (GANs) (Goodfellow et al., 2014) have emerged
as two of the most effective frameworks. VAEs use varia-
tional evidence lower bound to learn an encoder network
that maps images to an approximation of the posterior distri-
bution over latent variables. Similarly, a decoder network is
learned that produces the conditional distribution on images
given the latent variables. GANs are also composed of two
differentiable networks. The generator network synthesizes
images from latent variables, similar to the VAE decoder.
The discriminator’s goal is to separate real training images
from synthetic images sampled from the generator. During

training, GANs employ an adversarial learning procedure
which allows to simultaneously optimize the discrimina-
tor and generator parameters. Even though GANs have
been shown to generate more realistic samples than VAEs,
they lack an inference mechanism able to map images into
their corresponding latent variables. In order to address
this drawback, there have been several attempts to combine
ideas from VAEs and GANs (Larsen et al., 2015; Dumoulin
et al., 2017; Donahue et al., 2017). Interestingly, it has been
shown that adversarial learning can be used to minimize
the variational objective function of VAEs (Makhzani et al.,
2016; Huszár, 2017). Inspired by this observation, various
methods such as adversarial variational Bayes (Mescheder
et al., 2017), α-GAN (Rosca et al., 2017), and symmetric-
VAE (sVAE) (Pu et al., 2018) have incorporated adversarial
learning into the VAE framework.

Different from this prior work, our Rb-VAE model is a
deep generative model specifically designed to solve the
reference-based disentangling problem. During training,
adversarial learning is used in order to minimize a varia-
tional objective function inspired by the one employed in
sVAE (Pu et al., 2018). Although sVAE was originally moti-
vated by the limitations of the maximum likelihood criterion
used in unsupervised VAEs, we show how its variational
formulation offers specific advantages in our context.

Learning Disentangled Representations is a long stand-
ing problem in machine learning and computer vision (Ben-
gio et al., 2013). In the literature, we can differentiate three
main paradigms to address it: unsupervised, supervised,
and weakly-supervised learning. Unsupervised models are
trained without specific information about the generative
factors of interest (Desjardins et al., 2012; Chen et al., 2016).
To address this task, the most common approach consists
in imposing different constraints on the latent representa-
tion. For instance, unsupervised VAEs typically define the
prior over the latent variables with a fully-factorized Gaus-
sian distribution. Given that high-level generative factors
are typically independent, this prior encourage their dis-
entanglement in different dimensions of the latent repre-
sentation. Based on this observation, different approaches
such as β-VAE (Higgins et al., 2017), DIP-VAE (Kumar
et al., 2018), FactorVAE (Kim & Mnih, 2018) or β-TCVAE
(Chen et al., 2018) have explored more sophisticated regular-
ization mechanisms over the distribution of inferred latent
variables. Although unsupervised approaches are able to
identify simple explanatory components, they do not allow
latent variables to model specific high-level factors.

A straight-forward approach to overcome this limitation is
to use a fully-supervised strategy. In this scenario, mod-
els are learned by using a training set where the factors of
interest are explicitly labelled. Following this paradigm,
we can find different semi-supervised (Kingma et al., 2014;
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Narayanaswamy et al., 2017), and conditional (Yan et al.,
2016; Pu et al., 2016) variants of autoencoders. In spite
of the effectiveness of supervised approaches in different
applications, obtaining explicit labels is not feasible in sce-
narios where we aim to disentangle a large number of fac-
tors or their annotation is difficult. An intermediate solution
between unsupervised and fully-supervised methods are
weakly-supervised approaches. In this case, only implicit
information about factors of variation is provided during
training. Several works have explored this strategy by using
different forms of weak-supervision such as: temporal co-
herence in sequential data (Hsu et al., 2017; Denton et al.,
2017; Villegas et al., 2017), pairs of aligned images obtained
from different domains (Gonzalez-Garcia et al., 2018) or
knowledge about the rendering process in computer graph-
ics (Yang et al., 2015; Kulkarni et al., 2015).

Different from previous works relying on other forms of
weak supervision, our method addresses the reference-based
disentangling problem. In this scenario, the challenge is to
exploit the implicit information provided by a training set
of images where the generative factors of interest are con-
stant. Related with this setting, recent approaches have
considered to exploit pairing information of images known
to share the same generative factors (Mathieu et al., 2016b;
Donahue et al., 2018; Feng et al., 2018; Bouchacourt et al.,
2018). However, the amount of supervision required by
these methods is larger than the available in reference-based
disentangling. Concretely, we only know that reference im-
ages are generated by the same constant factor. In addition,
no information is available about what unlabelled samples
share the same target factors.

3. Preliminaries: Variational Autoencoders
Variational autoencoders (VAEs) are generative models
defining a joint distribution pθ(x, z) = pθ(x|z)p(z), where
x is an observation, e.g. an image, and z is a latent variable
with a simple prior p(z), e.g. a Gaussian with zero mean and
identity covariance matrix. Moreover, pθ(x|z) is typically
modeled as a factored Gaussian, whose mean and diagonal
covariance matrix are given by a function of z, implemented
by a generator neural network.

Given a training set of samples from an unknown data dis-
tribution p(x), VAEs learn the optimal parameters θ by
defining a variational distribution qψ(x, z) = qψ(z|x)p(x).
Note that qψ(z|x) approximates the intractable posterior
p(z|x) and is defined as another factored Gaussian, whose
mean and diagonal covariance matrix are given as the output
of an encoder or inference network with parameters ψ. The
generator and the encoder are optimized by solving:

min
θ,ψ

Ep(x)
[
KL(qψ(z|x) ‖ p(z))− Eqψ(z|x) log(pθ(x|z))

]
,

which is equivalent to the minimization of the KL diver-

gence between qψ(x, z) and pθ(x, z). The first KL term can
be interpreted as a regularization mechanism encouraging
the distribution qψ(z|x) to be similar to p(z). The second
term is known as the reconstruction error, measuring the
negative log-likelihood of a generated sample x from its
latent variables qψ(z|x). Optimization can be carried out
by using stochastic gradient descent (SGD) where p(x) is
approximated by the training set. The re-parametrization
trick (Rezende et al., 2014) is employed to enable gradient
back-propagation across samples from qφ(z|x).

4. Reference-based Disentangling
Consider a training set of unlabelled images (e.g. human
faces) x ∈ RW×H×3 sampled from a given distribution
pu(x). Our goal is to learn a latent variable model defining
a joint distribution over x and latent variables e ∈ RDe
and z ∈ RDz . Whereas e is expected to encode infor-
mation about a set of generative factors of interest, e.g.
facial expressions, z should model the remaining factors
of variation underlying the images, e.g. pose, illumination,
identity, etc. From now on, we will refer to e and z as the
“target” and “common factors”, respectively. In order to
disentangle them, we are provided with an additional set of
reference images sampled from pr(x), representing a distri-
bution over x where target factors e are constant e.g. neutral
faces. Given pr(x) and pu(x), we define an auxiliary bi-
nary variable y ∈ {0, 1} indicating whether an image x has
been sampled from the unlabelled or reference distributions,
i.e. p(x|y = 0) = pu(x) and p(x|y = 1) = pr(x). In
reference-based disentangling, we aim to exploit the weak-
supervision provided by y in order to effectively disentangle
target factors e and common factors z.

4.1. Reference-based Variational Autoencoders

In this section, we present reference-based variational auto-
encoders (Rb-VAE). Rb-VAE is a deep latent variable model
defining a joint distribution:

pθ(x, z, e, y) = pθ(x|z, e)p(z)p(e|y)p(y), (1)

where conditional dependencies are designed to address the
reference-based disentangling problem, see Fig. 2(a). We
define pθ(x|z, e) = L(x|Gθ(z, e), λ), where Gθ(z, e) is the
generator network, mapping a pair of latent variables (z, e)
to an image defining the mean of a Laplace distribution L
with fixed scale parameter λ. We use a Laplace distribution,
instead of the Gaussian usually employed in the VAEs. The
reason is that the negative log-likelihood is equivalent to
the `1-loss which encourages sharper image reconstructions
with better visual quality (Mathieu et al., 2016a).

To reflect the assumption of constant target factors across
reference images, we define the conditional distribution over
e given y = 1 as a delta peak centered on a learned vector
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Figure 2: (a) Rb-VAE generative process where pθ(x|z, e)
maps latent variables z (common factors) and e (target fac-
tors) to images x. Shaded circles indicate observed variables.
Note that for the reference samples (y = 0), the prior p(e|y)
is deterministic given that images are are known to be gen-
erated by constant er. (b) Approximate posteriors q(z|x)
and q(e|x, y) map images x to the corresponding common
and target factors z and e respectively.

er ∈ RDe , i.e. p(e|y = 1) = δ(e − er). In contrast, for
y = 0, the conditional distribution is set to a unit Gaussian,
p(e|y = 0) = N (e|0, I), as in standard VAEs. In the
following, we denote p(e|y = 0) = p(e). Contrary to the
case of target factors e, the prior over common factors z is
equal for reference and unlabelled images, and taken to be
a unit Gaussian p(z) = N (z|0, I). Finally, we assume a
uniform prior over y, i.e. p(y = 0) = p(y = 1) = 1

2 .

4.2. Conventional Variational Learning

Following the standard VAE framework discussed in
Sec. 3, we define a variational distribution qψ(x, z, e, y) =
qψ(x, z|x)qψ(e|x, y)p(x, y), and learn the model parame-
ters θ by minimizing the KL divergence between qψ and pθ:

min
θ,ψ

KL(qψ(x, z, e, y) ‖ pθ(x, z, e, y)). (2)

Note that the conditionals qψ(e|x, y) and qψ(z|x) pro-
vide a factored approximation of the intractable posterior
pθ(e, z|x, y), allowing to infer target and common fac-
tors e and z given the image x, see Fig. 2(b). Given
a reference image, i.e. with y = 1, the target factors
qψ(e|x, y = 1) are known to be equal to the reference
value er. On the other hand, given an non-reference im-
age, i.e. with y = 0, we define the approximate posterior
qψ(e|x, y = 0) = N (e|Eµ(x), Eσ(x)), where the means
and diagonal covariance matrices of a conditional Gaus-
sian distribution are given by non-linear functions Eµ(x)
and Eσ(x), respectively. Similarly, we use an additional
network to model qψ(z|x) = N (z|Zµ(x),Zσ(x)).

Optimization. In Appendix A.1 we show that the mini-

mization of Eq. (2) can be expressed as

min
θ,ψ,er

Epu(x)
[
KL(qψ(z|x)qψ(e|x) ‖ p(z)p(e))−

Eqψ(z|x)qψ(e|x) log(pθ(x|z, e))
]
+

Epr(x)
[
KL(qψ(z|x) ‖ p(z))−

Eqψ(z|x) log(pθ(x|z, e
r))
]
, (3)

where the second and fourth terms of the expression corre-
spond to the reconstruction errors for unlabelled and refer-
ence images respectively. Note that, for reference images,
no inference over target factors e is needed. Instead, the
generator reconstructs them using the learned parameter er.
Similar to standard VAEs, the remaining terms consist of KL
divergences between approximate posteriors and priors over
the latent variables. The minimization problem defined in
Eq. (3) can be solved using SGD and the re-parametrization
trick in order to back-propagate the gradient when sampling
from qψ(e|x) and qψ(z|x).

4.3. Symmetric Variational Learning

The main limitation of the variational objective defined in
Eq. (3) is that it does not guarantee that common and target
factors will be effectively disentangled in z and e respec-
tively. In order to understand this phenomenon, it is neces-
sary to analyze the role of the conditional distribution p(e|y)
in Rb-VAEs. By defining p(e|y = 1) as a delta function, the
model is forced to encode into z all the generative factors of
reference images, given that they must be reconstructed via
pθ(x|z, er) with constant er. Therefore, p(e|y) is implicitly
encouraging qψ(z|x) to encode common factors present in
reference and unlabelled samples. However, this mechanism
does not avoid the scenario where target factors are also en-
coded into latent variables z. More formally, given that z
is expressive enough, the minimization of Eq. (3) does not
prevent a degenerate solution pθ(x|z, e) = pθ(x|z), where
the inferred latent variables by qψ(e|x) are ignored by the
generator.

To address this limitation, we propose to optimize an al-
ternative variational expression inspired by unsupervised
Symmetric VAEs (Pu et al., 2018). Specifically, we add
the reverse KL between qψ and pθ to the objective of the
minimization problem:

min
θ,ψ

KL(qψ(x, z, e, y) ‖ pθ(x, z, e, y))+

KL(pθ(x, z, e, y) ‖ qψ(x, z, e, y)). (4)

In order to understand why this additional term allows to
mitigate the degenerate solution pθ(x|z, e) = pθ(x|z), it is
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necessary to observe that its minimization is equivalent to:

min
θ,ψ

Ep(z,e)
[
KL(pθ(x|z, e) ‖ pu(x))− (5)

Epθ(x|z,e)[log(qψ(z|x)) + log(qψ(e|x))]
]
+

Ep(z)pθ(x|z,er)
[
KL(pθ(x|z, er)||pr(x))− log(qψ(z|x))

]
,

see Appendix A.1 for details. Note that the two KL diver-
gences encourage images generated using p(z), p(e) and
er to be similar to samples from the real distributions pr(x)
and pu(x). On the other hand, the remaining terms cor-
respond to reconstruction errors over latent variables z, e
inferred from generated images drawn from pθ. As a con-
sequence, the minimization of these errors is encouraging
the generator pθ(x|z, e) to generate images x by taking into
account latent variables e, since the latter must be recon-
structed via qψ(e|x). In conclusion, the minimization of the
reversed KL avoids the degenerate solution ignoring e.

Optimization via Adversarial Learning. Given the intro-
duction of the reversed KL divergence, the learning proce-
dure described in Sec. 4.2 can not be directly applied to the
minimization of Eq. (4). However, note that we can express
the defined symmetric objective as:

min
θ,ψ

Eqψ(e,z|x)pu(x)Lxze − Epθ(x|e,z)p(z)p(e)Lxze

+ Eqψ(z|x)pr(x)Lxz − Epθ(x|er,z)p(z)Lxz, (6)

whereLxze corresponds to the log-density ratio between dis-
tributions qψ(e, z|x)pu(x) and pθ(x|e, z)p(z)p(e). Simi-
larly, Lxz defines an analogous expression for qψ(z|x)pr(x)
and pθ(x|er, z)p(z). See Appendix A.1 for a detailed
derivation.

Taking into account previous definitions, SGD optimization
can be employed in order to learn model parameters. Con-
cretely, we can evaluate Lxze and Lxz to back-propagate
the gradients w.r.t. parameters ψ and θ by using the re-
parametrization trick over samples of x, e and z. The main
challenge of this strategy is that expressions Lxze and Lxz

can not be explicitly computed. However, the log-density
ratio between two distributions can be estimated by using
logistic regression (Bickel et al., 2009). In particular, we
define an auxiliary parametric function dξ(x, z, e) ∼ Lxze

and learn its parameters ξ by solving:

max
ξ

Epθ(x|z,e)p(z,e) log(σ(dξ(x, z, e))

+ Eqψ(e,z|x)pu(x) log(1− σ(dξ(x, z, e)), (7)

where σ(·) refers to the sigmoid function. Similarly, Lxz is
approximated with an additional function dγ(x, z).

This approach is analogous to adversarial unsupervised
methods such as ALI (Dumoulin et al., 2017), where the

Figure 3: Losses used by sRB-VAE. Discriminator
dξ(x, z, e) measures the log-density ratio between the distri-
butions qψ(z, e|x)pu(x) and pθ(x|e, z)p(z)p(e). (b) Sim-
ilar loss for reference images using an additional discrim-
inator dγ(x, z) (c,d) Reconstruction errors for unlabelled
and reference images. (e,f) Reconstruction error over la-
tent variables inferred from unlabelled and reference images
generated using p(z), p(e) and er

function dγ(·) acts as a discriminator trying to distinguish
whether pairs of reference images x and latent variables z
have been generated by qψ and pθ. However, in our case
we have an additional discriminator dξ operating over un-
labelled images and its corresponding latent variables z
and e (see Fig. 3a-b) To conclude, it is also interesting to
observe that the discriminator dγ(x, z) is implicitly encour-
aging latent variables z to encode only information about
the common factors. The reason is that samples generated
from pθ(x|z, er)p(z) are forced to be similar to reference
images. As a consequence, z can not contain information
about target factors, which must be encoded into e.

Using previous definitions, we use an adversarial procedure
where model and discriminators parameters (θ,ψ), and (ξ,γ)
are simultaneously optimized by minimizing and maximiz-
ing equations (6) and (7) respectively. The algorithm used
to process one batch during SGD is shown in Appendix A.2.
In Rb-VAEs, the discriminators dγ(·) and dξ(·) are also
implemented as deep convolutional networks.

Explicit Log-likelihood Maximization. As shown in equa-
tions (3) and (5), the minimization of the symmetric KL
divergence encourages low reconstruction errors for images
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and inferred latent variables. However, by using the pro-
posed adversarial learning procedure, the minimization of
these terms becomes implicit. As shown by Dumoulin et al.
(2017) and Donahue et al. (2017), this can cause original
samples to differ substantially from their corresponding re-
constructions. In order to address this drawback, we use
a similar strategy as Pu et al. (2018) and Li et al. (2017),
and explicitly add the reconstruction terms into the learn-
ing objective, minimizing them together with Eq. (6), see
Fig. 3(c–f). In preliminary experiments, we found that the
explicit addition of these reconstructions terms during train-
ing is important to achieve low reconstruction errors, and to
increase stability of adversarial training.

5. Experiments
5.1. Datasets

To validate our approach and to compare to existing work,
we consider two different problems.

Digit Style Disentangling. The goal is to model style vari-
ations from hand-written digits. We consider the digit style
as a set of three different properties: scale, width and color.
In order to address this task from a reference-based per-
spective, we use half of the original training images in the
MNIST dataset (LeCun et al., 1998) as our reference distri-
bution (30k examples). The unlabelled set is synthetically
generated by applying different transformations over the
remaining half of images: (1) Simulation of stroke widths
by using a dilation with a given filter size; (2) Digit col-
orization by multiplying the RGB components of the pixels
in an image by a random 3D vector; (3) Size variations by
down-scaling the image by a given factor. We randomly
transform each image twice to obtain a total of 60k unsu-
perivsed images. See more details in Appendix A.3.

Facial Expression Disentangling. We address the disen-
tangling of facial expressions by using a reference set of
neutral faces. As unlabelled images we use a subset of
the AffectNet dataset (Mollahosseini et al., 2017), which
contains a large quantity of facial images. This database
is especially challenging since faces were collected “in the
wild” and exhibit a large variety of natural expressions. A
subset of the images are annotated according to different
facial expressions: happiness, sadness, surprise, fear, dis-
gust, anger, and contempt. We use these labels only for
quantitative evaluation. Given that we found that many
neutral images in the original database were not correctly
annotated, we collected a separate reference set, see Ap-
pendix A.3. The unlabelled and reference sets consist of
150k and 10k images, respectively.

5.2. Baselines and Implementation Details

We evaluate the two different variants of our proposed
method: Rb-VAE, trained using the standard variational
objective (Sec. 4.2), and sRb-VAE, learned by minimizing
the symmetric KL divergence (Sec. 4.3). To demonstrate
the advantages of exploiting the weak-supervision provided
by reference images, we compare both methods with various
state-of-the-art unsupervised approaches based on the VAE
framework: β-VAE (Higgins et al., 2017), β-TCVAE (Chen
et al., 2018), sVAE (Pu et al., 2018), DIP-VAE-I and DIP-
VAE-II (Kumar et al., 2018). Note that β-VAE DIP-VAE
and β-TCVAE have been specifically proposed for learning
disentangled representations, showing better performance
than other unsupervised methods such as InfoGAN (Chen
et al., 2016). On the other hand, sVAE is trained using a
similar variational objective as sRb-VAE, and can therefore
be considered an unsupervised version of our method. We
also evaluate vanilla VAEs (Kingma & Welling, 2014).

As discussed in Sec. 2, there are no existing approaches in
the literature that directly address reference-based disentan-
gling. In order to evaluate an alternative weakly-supervised
baseline exploiting the reference-set, we have implemented
(Mathieu et al., 2016b), and adapted it to our context. Con-
cretely, we have modified the learning algorithm in order
to use only pairing information from reference imagesm by
removing the reconstruction losses for pairs of unlabelled
samples as such information is not available in reference-
based disentangling.

The different components of our method are implemented as
deep neural networks. For this purpose, we have used conv-
deconv architectures as is standard in VAE and GANs litera-
ture. Specifically, we employ the main building blocks used
by Karras et al. (2018), where the generator is implemented
as a sequence of convolutions, Leaky-ReLU non-linearities,
and nearest-neighbour up-sampling operations. Encoder
and discriminators follow a similar architecture, using av-
erage pooling for down-sampling. See Appendix A.4 for
more details. For a fair comparison, we have developed our
own implementation for all the evaluated methods in order
to use the same network architectures and hyper-parameters.
During optimization, we use the Adam optimizer (Kingma
& Ba, 2015) and a batch size of 36 images. For the MNIST
and AffectNet , the models are learned for 30 and 20 epochs
respectively. The number of latent variables for the encoders
has been set to 32 for all the experiments and models. The
λ parameter in the Laplace distribution is set to 0.01.

5.3. Quantitative evaluation: Feature Learning

A common strategy to evaluate the quality of learned rep-
resentations is to measure the amount of information that
they convey about the underlying generative factors. In our
setting, we are interested in modelling the target factors that
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AffectNet MNIST
Happ Sad Sur Fear Disg Ang Compt Avg. R G B Scale Width Avg.

VAE .554 .279 .383 .357 .256 .415 .439 .383 .099 .104 .101 [.034] .085 .085
DIP-VAE-I .561 .269 [.401] .367 .258 .397 .463 .388 [.055] .064 .063 .038 .100 .064
DIP-VAE-II .548 .245 [.401] [.389] .268 .391 .463 .386 .077 .069 .076 .035 .098 .071
β VAE .581 .283 .373 .323 .250 .415 .467 .384 .093 .099 .094 .039 .089 .083
sVAE .583 .251 .389 .349 .260 .391 .469 .384 .094 .092 .084 .036 .104 .082

β-TCVAE .563 .277 .393 .349 .256 [.427] .467 .390 .098 .100 .099 [.034] [.084] .083
[Mathieu et. al] .567 .388 .312 .330 .295 .353 [.512] .395 .116 .116 .114 .039 .104 .098

RBD-VAE .536 .393 .379 .311 .320 .383 .421 392 .065 .069 .062 .061 .095 .070
sRBD-VAE [.587] [.405] .387 .327 [.344] .425 .483 [.422] .057 [.053] [.055] .038 .095 [.060]

Table 1: Prediction of target factors from learned representations. We report accuracy and mean-absolute-error as evaluation
metrics for the AffectNet and MNIST datasets, respectively. Two best methods shown in bold, best result in brackets.

are constant in the reference distribution.

Experimental Setup. Following a similar evaluation as
Mathieu et al. (2016b), we use the learned representations
as feature vectors and train a low-capacity model estimating
the target factors involved in each problem. Concretely, in
the MNIST dataset we employ a set of linear-regressors
predicting the scale, width and color parameters for each
digit. To predict the different expression classes in the Af-
fectNet dataset, we use a linear classifier. For methods using
the reference-set, we used the inferred latent variables e as
features since they are expected to encode the information
regarding the target factors. In unsupervised models we
use all the latent variables. For evaluation, we split each
dataset in three subsets. The first is used to learn each gen-
erative model. Then, the second is used for training the
regressors or classifier. Finally, the third is used to evalu-
ate the predictions in terms of the mean absolute error and
per-class accuracy for the MNIST and AffectNet datasets,
respectively. In MNIST, the second and third subset (5k im-
ages each) have been randomly generated from the original
MNIST test set using the procedure described in Sec. 5.1.
For AffectNet, we randomly select 500 images for each of
the seven expressions from the original dataset, yielding
3,500 images per fold.

It is worth mentioning that some recent works (Kumar et al.,
2018; Chen et al., 2018) have proposed alternative criterias
to evaluate disentanglement. However, the proposed metrics
are specifically designed to measure how a single dimension
of the learned representation corresponds to a single ground-
truth label. Note, however, that the one-to-one mapping
assumption is not appropriate for real scenarios where we
want to model high-level generative factors. For instance, it
is unrealistic to expect that a single dimension of the latent
vector e can convey all the information about a complex
label such as the facial expression.

Results and discussion. Table 1 shows the results ob-
tained by the different baselines considered and the pro-
posed Rb-VAE and sRb-VAE. For DIP-VAE, β-VAE and
β-TCVAE we tested different regularization parameters in

the range [1, 50], and report the best results. Note that the
unsupervised approach DIP-VAE-I achieves better average
results than Rb-VAE for MNIST. Moreover, in AffectNet,
β-TCVAE achieves comparable or better performance in
several cases. This may seem counter-intuitive because,
unlike Rb-VAE, DIP-VAE-I is trained without the weak-
supervision provided by reference images. However, it con-
firms our hypothesis that the learning objective of Rb-VAE
does not explicitly encourage the disentanglement between
target and common factors. In contrast, we can see that in
most cases sRb-VAE obtains comparable or better results
than rest of the methods. Moreover, it achieves the best
average performance in both datasets. This demonstrates
that the information provided by the reference distribution
is effectively exploited by the symmetric KL objective used
to train sRb-VAE. Additionally, note that the better perfor-
mance of our model compared to unsupervised methods is
informative. The reason is that the latter must encode all
the generative factors into a single feature-vector. As a con-
sequence, the target factors are entangled with the rest and
the ground-truth labels are difficult to predict. In contrast,
the representation e learned by our model is shown to be
more effective because non-relevant factors are effectively
removed, i.e. encoded into z.

In order to further validate this conclusion, we have followed
the same evaluation protocol for Rb-VAE and sRb-VAE but
considering the latent variables z as features. The aver-
age performance obtained by Rb-VAE is .349 and .195 for
AffectNet and MNIST respectively. On the other hand, sRb-
VAE achieves .335 and .189. Note that for both methods
these results are significantly worse compared to using e as
a representation in Table 1. This shows that latent variable z
is mainly modelling the common factors between reference
and unlabelled images. The qualitative results presented in
the next section confirm this. To conclude, note that sRb-
VAE also obtains better performance than Mathieu et al.
(2016b) in both data-sets. So even though this method also
uses reference-images during training, sRb-VAE is shown
to better exploit the weak-supervision existing in reference-
based disentangling.
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Figure 4: Conditional image synthesis for MNIST (top) and AffectNet (bottom) using sRb-VAE and Rb-VAE. Within each
column images are generated using the same random target factors e.

Figure 5: Transferring target factors e from image A to an
image B on AffectNet (expression) and MNIST (style).

5.4. Qualitative Evaluation

In contrast to unsupervised methods, reference images are
used by our model in order to split target and common
factors into two different subsets of latent variables. This
directly enables tasks such as conditional image synthesis or
attribute transfer. In this section, we illustrate the potential

applications of our proposed model in this settings.

Conditional Image Synthesis. The goal is to transform
real images by modifying only the target factors e. For
instance, given a face of an individual, we aim to gener-
ate images of the same subject exhibiting different facial
expressions. For this purpose, we use our model in order
to infer the common factors z. Then, we sample a vector
e ∼ N (0,1) and use the generator network to obtain a
new image from e and z. In Fig.(4) we show examples of
samples generated by Rb-VAE and sRb-VAE following this
procedure. As we can observe, sRb-VAE generates more
convincing results than its non-symmetric counterpart. In
the AffectNet database, the amount of variability in Rb-VAE
samples is quite low. In contrast, sRb-VAE is able to gener-
ate more diverse expressions related with eyes, mouth and
eyebrows movements. Looking at the MNIST samples, we
can draw similar conclusions. Whereas both methods gen-
erate transformations related with the digit color, Rb-VAE
does not model scale variations in e, while sRb-VAE does.
This observation is coherent with results reported in Tab. 1,
where Rb-VAE offers a poor estimation of the scale.

Visual Attribute Transfer. Here we transfer target factors
e between a pair of images A and B. For example, given two
samples from the MNIST dataset, the goal is to generate a
new image with the digit in A modified with the style in B.
Using our model, this can be easily achieved by synthesizing
a new image from latent variables e and z inferred from
A and B respectively. Fig. 5 shows images generated by
sRb-VAE and Rb-VAE in this scenario. In this case, we can
draw similar conclusions than the previous experiment. Rb-
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VAE is not able to swap target factors related with the digit
scale in the MNIST dataset, unlike sRb-VAE which better
model this type of variation. On the AffectNet images, both
methods are able to keep most of the information regarding
the identity of the subject, but again Rb-VAE leads to weaker
expression changes than sRb-VAE.

These qualitative results demonstrate that the standard vari-
ational objective of VAE is sub-optimal to train our model,
and that the symmetric KL divergence objective used in sRb-
VAE allows to better disentangle the common and target
factors. Additional results are shown in Appendix A.5.

6. Conclusions
In this paper we have introduced the reference-based disen-
tangling problem and proposed reference-based variational
autoencoders to address it. We have shown that the standard
variational learning objective used to train VAE can lead to
degenerate solutions when it is applied in our setting, and
proposed an alternative training strategy that exploits adver-
sarial learning. Comparing the proposed model with previ-
ous state-of-the-art approaches, we have shown its ability
to learn disentangled representations from minimal super-
vision and its application to tasks such as feature learning,
conditional image generation and attribute transfer.
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Donahue, J., Krähenbühl, P., and Darrell, T. Adversarial
feature learning. ICLR, 2017.

Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O.,
Lamb, A., Arjovsky, M., and Courville, A. Adversarially
learned inference. ICLR, 2017.

Ekman, P. and Rosenberg, E. L. What the face reveals: Basic
and applied studies of spontaneous expression using the
Facial Action Coding System (FACS). Oxford University
Press, USA, 1997.

Feng, Z., Wang, X., Ke, C., Zeng, A.-X., Tao, D., and Song,
M. Dual swap disentangling. In NeurIPS, pp. 5898–5908,
2018.

Gonzalez-Garcia, A., van de Weijer, J., and Bengio, Y.
Image-to-image translation for cross-domain disentan-
glement. NeurIPS, 2018.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. In NIPS, 2014.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. Beta-
VAE: Learning basic visual concepts with a constrained
variational framework. ICLR, 2017.

Hsu, W.-N., Zhang, Y., and Glass, J. Unsupervised learning
of disentangled and interpretable representations from
sequential data. In NIPS, 2017.

Huszár, F. Variational inference using implicit distributions.
arXiv preprint arXiv:1702.08235, 2017.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
sive growing of gans for improved quality, stability, and
variation. ICLR, 2018.

Kim, H. and Mnih, A. Disentangling by factorising. ICML,
2018.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. ICLR, 2015.

Kingma, D. and Welling, M. Auto-encoding variational
Bayes. ICLR, 2014.

Kingma, D., Mohamed, S., Rezende, D. J., and Welling, M.
Semi-supervised learning with deep generative models.
In NIPS, 2014.

Kulkarni, T. D., Whitney, W. F., Kohli, P., and Tenenbaum,
J. Deep convolutional inverse graphics network. In NIPS,
2015.



Learning Disentangled Representations with Reference-Based Variational Autoencoders

Kumar, A., Sattigeri, P., and Balakrishnan, A. Variational
inference of disentangled latent concepts from unlabeled
observations. ICLR, 2018.

Larsen, A. B. L., Sønderby, S. K., Larochelle, H., and
Winther, O. Autoencoding beyond pixels using a learned
similarity metric. ICML, 2015.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 1998.

Li, C., Liu, H., Chen, C., Pu, Y., Chen, L., Henao, R.,
and Carin, L. Alice: Towards understanding adversarial
learning for joint distribution matching. In NIPS, 2017.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., and Frey,
B. Adversarial autoencoders. ICLR, 2016.

Mathieu, M., Couprie, C., and LeCun, Y. Deep multi-scale
video prediction beyond mean square error. ICLR, 2016a.

Mathieu, M. F., Zhao, J. J., Zhao, J., Ramesh, A., Sprech-
mann, P., and LeCun, Y. Disentangling factors of varia-
tion in deep representation using adversarial training. In
NIPS, 2016b.

Mescheder, L., Nowozin, S., and Geiger, A. Adversarial
variational bayes: Unifying variational autoencoders and
generative adversarial networks. ICML, 2017.

Mollahosseini, A., Hasani, B., and Mahoor, M. H. Affectnet:
A database for facial expression, valence, and arousal
computing in the wild. IEEE Transactions on Affective
Computing, 2017.

Narayanaswamy, S., Paige, T. B., Van de Meent, J.-W.,
Desmaison, A., Goodman, N., Kohli, P., Wood, F., and
Torr, P. Learning disentangled representations with semi-
supervised deep generative models. In NIPS, 2017.

Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A.,
and Carin, L. Variational autoencoder for deep learning
of images, labels and captions. In NIPS, 2016.

Pu, Y., Chen, L., Dai, S., Wang, W., Li, C., and Carin, L.
Symmetric variational autoencoder and connections to
adversarial learning. AISTATS, 2018.

Rezende, D., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. In ICML, 2014.

Rosca, M., Lakshminarayanan, B., Warde-Farley, D.,
and Mohamed, S. Variational approaches for auto-
encoding generative adversarial networks. arXiv preprint
arXiv:1706.04987, 2017.

van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals,
O., Graves, A., et al. Conditional image generation with
PixelCNN decoders. In NIPS, 2016.

Villegas, R., Yang, J., Hong, S., Lin, X., and Lee, H. De-
composing motion and content for natural video sequence
prediction. ICLR, 2017.

Xiong, X. and De la Torre, F. Supervised descent method
and its applications to face alignment. In CVPR, 2013.

Yan, X., Yang, J., Sohn, K., and Lee, H. Attribute2image:
Conditional image generation from visual attributes. In
ECCV. Springer, 2016.

Yang, J., Reed, S. E., Yang, M.-H., and Lee, H. Weakly-
supervised disentangling with recurrent transformations
for 3d view synthesis. In NIPS, 2015.



Learning Disentangled Representations with Reference-Based Variational Autoencoders

A. Appendix
A.1. Mathematical derivations

Equivalence between KL(qψ(x, z, e, y) ‖ pθ(x, z, e, y)) and Eq. (3):

∑
y∈[0,1]

∫
x,e,z

qψ(e|x, y)qψ(z|x)p(x|y)p(y) log

(
qψ(z, e|x, y)p(x|y)p(y)
pθ(x|e, z)p(z)p(e|y)p(y)

)
dxdzde (8)

=
1

2

∫
x,e,z

qψ(e|x)qψ(z|x)pu(x) log

(
qψ(e|x)qψ(z|x)pu(x)
pθ(x|e, z)p(z)p(e)

)
dxdzde

+
1

2

∫
x,z

qψ(z|x)pr(x) log

(
qψ(z|x)pr(x)
pθ(x|er, z)p(z)

)
dxdz (9)

=
1

2
Epu(x)Eqψ(e|x)qψ(z|x)

[
log

(
qψ(e|x)qψ(z|x)

p(z)p(e)

)
− log(pθ(x|e, z))

]
−Hu(x)

+
1

2
Epr(x)Eqψ(z|x)

[
log

(
qψ(z|x)
p(z)

)
− log(pθ(x|er, z))

]
−Hr(x) (10)

=
1

2
Epu(x)

[
KL(qψ(z|x)qψ(e|x) ‖ p(z)p(e))− Eqψ(z|x)qψ(e|x) log(pθ(x|z, e))

]

+
1

2
Epr(x)

[
KL(qψ(z|x) ‖ p(z))− Eqψ(z|x) log(pθ(x|z, e

r))

]
−Hr(x)−Hu(x)

We use Hr(X) and Hu(X) to denote the entropy of the reference and unlabelled distributions pr(x) and pu(x) respectively.
Note that they can be ignored during the minimization since are constant w.r.t. parameters θ and ψ. For the second equality,
we have used the definitions p(x|y = 0) = pu(x), p(x|y = 1) = pr(x) and assumed p(y = 0) = p(y = 1) = 1

2 .
Moreover, we have exploited the fact that qψ(e|x, y = 1) and p(e|y = 1) are defined as delta functions and, therefore,
Ep(e|y=1)log(

p(e|y=1)
qψ(e|y=1) ) = 0. We denote p(e|y = 0) = p(e) and qψ(e|x, y = 0) = qψ(e|x) for the sake of brevity.

Equivalence between KL(pθ(x, z, e, y) ‖ qψ(x, z, e, y)) and the expression in Eq. (5)

∑
y∈[0,1]

∫
x,e,z

pθ(x|e, z)p(z)p(e|y)p(y) log

(
pθ(x|e, z)p(z)p(e|y)p(y)
qψ(z, e|x, y)p(x|y)p(y)

)
dxdzde (11)

=
1

2

∫
x,e,z

pθ(x|e, z)p(z)p(e) log

(
pθ(x|e, z)p(z)p(e)
qψ(e|x)qψ(z|x)pu(x)

)
dxdzde

+
1

2

∫
x,z

pθ(x|er, z)p(z) log

(
pθ(x|er, z)p(z)
qψ(z|x)pr(x)

)
dxdzde (12)

=
1

2
Ep(z)p(e)Epθ(x|e,z)

[
log

(
pθ(x|e, z)
p(x)u

)
− log(qψ(e|x)qψ(z|x))

]

+
1

2
Ep(z)Epθ(x|er,z)

[
log

(
pθ(x|er, z)
p(x)r

)
− log(qψ(z|x))

]
−H(z)− 1

2
H(e) (13)

=
1

2
Ep(z)p(e)

[
KL(pθ(x|z, e) ‖ pu(x))− Epθ(x|z,e)[log(qψ(z|x)) + log(qψ(e|x))]

]
+

1

2
Ep(z)

[
KL(pθ(x|z, er) ‖ pr(x))− Epθ(x|z,er) log(qψ(z|x))

]
−H(z)− 1

2
H(e) (14)
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We have used the same definitions and assumptions previously discussed. Moreover, we denote H(z) and H(e) as the
entropy of the priors p(z) and p(e). Again, we can ignore these terms when we are optimizing w.r.t parameters ψ and θ.

Equivalence between the minimization of the symmetric KL divergence in Eq. (4) and the expression in Eq. (6)

KL(qψ(z, e,x, y) ‖ pθ(x, z, e, y)) +KL(pθ(x, z, e, y) ‖ qψ(z, e,x, y)) = (15)

= Eqψ(e|x,y)qψ(z|x)p(x|y)p(y) log

(
qψ(e|x, y)qψ(z|x)p(x|y)p(y)
pθ(x|e, z)p(z)p(e|y)p(y)

)

+ Epθ(x|e,z)p(z)p(e|y)p(y) log

(
pθ(x|e, z)p(z)p(e|y)p(y)

qψ(e|x, y)qψ(z|x)p(x|y)p(y)

)
(16)

=
1

2

[
Eqψ(e,z|x)pu(x) log

(
qψ(e, z|x)pu(x)
pθ(x|e, z)p(z)p(e)

)
+ Eqψ(z|x)pr(x) log

(
qψ(z|x)p(x)r

pθ(x|er, z)p(z)

)

+ Epθ(x|e,z)p(z)p(e) log

(
pθ(x|e, z)p(z)p(e)
qψ(e, z|x)pu(x)

)
+ Epθ(x|er,z)p(z) log

(
pθ(x|er, z)p(z))
qψ(z|x)pr(x)

)]
(17)

=
1

2

[
Eqψ(e,z|x)pu(x)Lxze + Eqψ(z|x)pr(x)Lxz − Epθ(x|e,z)p(z)p(e)Lxze − Epθ(x|er,z)p(z)Lxz

]
(18)

A.2. Pseudo-code for adversarial learning procedure

Algorithm 1 shows pseudo-code for the adversarial learning algorithm described in Sec. 4.3 of the paper.

Algorithm 1 sRb-VAE Advesarial Learning (Batch processing during SGD)

1: /*** Gradient φ ***/
2: Sample {x1, ...,xM} from pu(x)
3: Sample {xr1, ...,x

r
M} from pr(x)

4: Sample {e1, ..., eM} using qφ(e|x)
5: Sample {z1, ..., zM} using qφ(z|x)
6: Sample {zr1, ..., z

r
M} using qφ(z|xr)

7: Compute gradient of Eq. (8) w.r.t ψ using the reparametrization trick for
stochastic variables z, e and zr :

gφ ← ∇φ
1

m

[∑
m

dξ(xm, zm, em)

+ dγ(x
r
m, z

r
m)

]
8: /*** Gradient θ ***/
9: Sample {ê1, ..., êM} from p(e)

10: Sample {ẑ1, ..., ẑM} from p(z)
11: Sample {ẑr1, ..., ẑ

r
M} from p(z)

12: Sample {x̂1, ..., x̂M} using pθ(x|ẑ, e)
13: Sample {x̂r1, ..., x̂

r
M} using pθ(x|ẑ, er)

14: Compute gradient of Eq. (8) w.r.t θ using the reparametrization trick for
stochastic variables x̂ and x̂r :

gθ ← ∇θ
1

m

[∑
m

dξ(x̂m, ẑm, êm)

+ dγ(x̂
r
m, ẑ

r
m)

]

15: /*** Gradient ξ ***/
16: Compute gradient of discriminator function (Eq. (9)) w.r.t ξ:

gξ ← ∇ξ
1

2m

∑
m

[
log(σ(dξ(xm, zm, em))+

log(1− σ(dξ(x̂m, ẑm, êm))
]

17: /*** Gradient γ ***/
18: Compute gradient of discriminator function (Eq. (9)) w.r.t γ:

gγ ← ∇γ
1

2m

∑
m

[
log(σ(dγ(x

r
m, z

r
m))+

log(1− σ(dγ(x̂rm, ẑ
r
m)

]

19: /*** Update Parameters ***/
20: Update parameters via SGD with learning rate λ:

θ ← θ + λgθ

ψ ← ψ − λgψ
ξ ← ξ + λgξ

γ ← γ + λgγ

A.3. Datasets

Examples of reference and unlabelled images for MNIST and AffectNet are shown in Fig. 6. In the following, we provide
more information about the used datasets.
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Figure 6: Examples of reference and unlabelled images used in our experiments. Extracted from MNIST (top) and AffectNet
(bottom) datasets.

A.3.1. MNIST

We use slightly modified version of the MNIST images: the size is increased to 64 × 64 pixels and an edge detection
procedure is applied to keep only the boundaries of the digit. We obtain the samples in the unlabelled dataset by applying
the following transformations over the MNIST images:

1. Width: Generate a random integer in the range {1, . . . , 10} using a uniform distribution. Apply a dilation operation
over the image using a squared kernel with pixel-size equal to the generated number.

2. Color: Generate a random 3D vector c ∈ [0, 1]3 using a uniform distribution. Normalize the resulting vector as
ĉ = c/||c||1. Multiply the RGB components of all the pixels in the image by ĉ.

3. Size: Generate a random number in the range [0.5, 1] using a uniform distribution. Downscale the image by a factor
equal to the generated number. Apply zero-padding to the resulting image in order to recover the original resolution.

A.3.2. AFFECTNET

Reference Set Collection. We collected a reference set of face images with neutral expression. We applied specific queries
in order to obtain a large amount of faces from image search engines. Then, five different annotators filtered them in order
to keep only images showing a neutral expression. The motivation for this data collection was that we found that many
neutral images in the AffectNet dataset (Mollahosseini et al., 2017) are not accurate. As detailed in the original paper, the
inter-observer agreement is significantly low for neutral images. In contrast, in our reference-set, each image was annotated
in terms of “neutral” / “non-neutral” by two different annotators. In order to ensure a higher label quality compared to the
AffectNet, only the images where both annotators agreed were added to the reference-set.
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Pre-processing. In order to remove 2D affine transformations such as scaling or in-plane rotations, we apply an alignment
process to the face images. We localize facial landmarks using the approach of Xiong & De la Torre (2013). Then, we apply
Procrustes analysis in order to find an affine transformation aligning the detected landmarks with a mean shape. Finally, we
apply the transformation to the image and crop it. The resulting image is then re-sized to a resolution of 96× 96 pixels.

A.4. Network architectures

Fig. 7 illustrates the network architectures used in our experiments. CN refers to pixel-wise normalization as described
in (Karras et al., 2018). FC defines a fully-connected layer. For Leaky ReLU non-linearities, we have used an slope of
0.2. Given that we normalize the images in the range [−1, 1], we use an hyperbolic tangent function as the last layer of
the generator. For the discriminator dγ(x, z), we use the same architecture showed for dξ(x, z, e) but removing the input
corresponding to e. For the Adam optimizer (Kingma & Ba, 2015) , we used α = 10−4, β1 = 0.5, β2 = 0.99 and ε = 10−8.
Note that the described architectures and hyper-parameters follow standard definitions according to most of GAN/VAEs
previous works.

In preliminary experiments, we found that the discriminator in sRb-VAE can start to ignore the inputs corresponding to latent
variables e and z while focusing only on real and generated images. In order to mitigate this problem during training, we
found it effective to randomly set to zero the inputs corresponding to latent variables and images of the last fully-connected
layer. Note that this strategy is only used for sRB-VAE and sVAE in our experiments and it is not necessary in the other
evaluated baselines. The reason is that these two methods are the only ones employing discriminators receiving images and
features as input. We set the dropout probability to 0.25. We found that this default value worked well for both methods in
all the datasets and no specific fine-tuning of this hyper-parameter was necessary to mitigate the described phenomena.

A.5. Additional Results

Figures 8 and 9 show additional qualitative results for conditional image generation and visual attribute transfer, in the
same spirit as the figures in Section 5.4. In order to provide more results for the conditional image generation task, we
also provide two videos in this supplementary material. These videos contain animations generated by interpolating over
the latent space corresponding to variations e (results shown for MNIST and AffectNet dataset). In Fig. 10, we also show
additional images generated by sRB-VAE trained with the AffectNet dataset. Different from the previous cases, these images
have been generated by just injecting random noise to the generator (over both latent variables e and z). Note that different
target factors e generate similar expressions in images generated from different common factors z. The additional results
further support the conclusions drawn in the main paper.
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Figure 7: Network architectures used in our experiments
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Figure 8: Qualitative results of sRb-VAE and Rb-VAE applied to conditional image generation. See Sec. (5.4) of the paper
for details.

Figure 9: Qualitative results of sRb-VAE and Rb-VAE applied to visual attribute transfer. See Sec. (5.4) of the paper for
details.
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Figure 10: Images sample from the sRB-VAE model. Images in the same panel share the same target factors e (expression).
Images sharing the same position in the grids are generated from the same common factors z (identity)
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