228 research outputs found

    Factorization of Discriminatively Trained i-vector Extractor for Speaker Recognition

    Full text link
    In this work, we continue in our research on i-vector extractor for speaker verification (SV) and we optimize its architecture for fast and effective discriminative training. We were motivated by computational and memory requirements caused by the large number of parameters of the original generative i-vector model. Our aim is to preserve the power of the original generative model, and at the same time focus the model towards extraction of speaker-related information. We show that it is possible to represent a standard generative i-vector extractor by a model with significantly less parameters and obtain similar performance on SV tasks. We can further refine this compact model by discriminative training and obtain i-vectors that lead to better performance on various SV benchmarks representing different acoustic domains.Comment: Submitted to Interspeech 2019, Graz, Austria. arXiv admin note: substantial text overlap with arXiv:1810.1318

    NPLDA: A Deep Neural PLDA Model for Speaker Verification

    Full text link
    The state-of-art approach for speaker verification consists of a neural network based embedding extractor along with a backend generative model such as the Probabilistic Linear Discriminant Analysis (PLDA). In this work, we propose a neural network approach for backend modeling in speaker recognition. The likelihood ratio score of the generative PLDA model is posed as a discriminative similarity function and the learnable parameters of the score function are optimized using a verification cost. The proposed model, termed as neural PLDA (NPLDA), is initialized using the generative PLDA model parameters. The loss function for the NPLDA model is an approximation of the minimum detection cost function (DCF). The speaker recognition experiments using the NPLDA model are performed on the speaker verificiation task in the VOiCES datasets as well as the SITW challenge dataset. In these experiments, the NPLDA model optimized using the proposed loss function improves significantly over the state-of-art PLDA based speaker verification system.Comment: Published in Odyssey 2020, the Speaker and Language Recognition Workshop (VOiCES Special Session). Link to GitHub Implementation: https://github.com/iiscleap/NeuralPlda. arXiv admin note: substantial text overlap with arXiv:2001.0703

    A Speaker Verification Backend with Robust Performance across Conditions

    Full text link
    In this paper, we address the problem of speaker verification in conditions unseen or unknown during development. A standard method for speaker verification consists of extracting speaker embeddings with a deep neural network and processing them through a backend composed of probabilistic linear discriminant analysis (PLDA) and global logistic regression score calibration. This method is known to result in systems that work poorly on conditions different from those used to train the calibration model. We propose to modify the standard backend, introducing an adaptive calibrator that uses duration and other automatically extracted side-information to adapt to the conditions of the inputs. The backend is trained discriminatively to optimize binary cross-entropy. When trained on a number of diverse datasets that are labeled only with respect to speaker, the proposed backend consistently and, in some cases, dramatically improves calibration, compared to the standard PLDA approach, on a number of held-out datasets, some of which are markedly different from the training data. Discrimination performance is also consistently improved. We show that joint training of the PLDA and the adaptive calibrator is essential -- the same benefits cannot be achieved when freezing PLDA and fine-tuning the calibrator. To our knowledge, the results in this paper are the first evidence in the literature that it is possible to develop a speaker verification system with robust out-of-the-box performance on a large variety of conditions

    On deep speaker embeddings for text-independent speaker recognition

    Full text link
    We investigate deep neural network performance in the textindependent speaker recognition task. We demonstrate that using angular softmax activation at the last classification layer of a classification neural network instead of a simple softmax activation allows to train a more generalized discriminative speaker embedding extractor. Cosine similarity is an effective metric for speaker verification in this embedding space. We also address the problem of choosing an architecture for the extractor. We found that deep networks with residual frame level connections outperform wide but relatively shallow architectures. This paper also proposes several improvements for previous DNN-based extractor systems to increase the speaker recognition accuracy. We show that the discriminatively trained similarity metric learning approach outperforms the standard LDA-PLDA method as an embedding backend. The results obtained on Speakers in the Wild and NIST SRE 2016 evaluation sets demonstrate robustness of the proposed systems when dealing with close to real-life conditions.Comment: Submitted to Odyssey 201
    corecore