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Abstract
This paper presents a system to identify the spoken language
in challenging audio material such as broadcast news shows.
The audio material targeted by the system is characterized by a
large range of background conditions (e.g. studio recordings vs.
outdoor interviews) and a considerable amount of non-native
speakers. The designed model-based language classifier auto-
matically identifies intervals of Flemish (Belgian Dutch), En-
glish or French speech. The proposed system is iVector-based,
but unlike the standard approach it does not model the Total
Variability. Instead, it relies on the original Joint Factor Analy-
sis recipe by modeling the different sources of variability sepa-
rately. For each speaker a fixed-length low-dimensional feature
vector is extracted which encodes the language variability and
the other sources of variability separately. The language fac-
tors are then fed to a simple language classifier. When assessed
on a self-composed dataset containing 9 hours of monolingual
broadcast news, 9 hours of multilingual broadcast news and 10
hours of documentaries, this classifier is found to outperform
a state-of-the-art eigenchannel compensated discriminatively-
trained GMM system by up to 20% relative. A standard iVector
baseline is outperformed by up to 40% relative.

1. Introduction
Many radio and television programs in Flanders –the Dutch
speaking region in Belgium– comprise multiple languages. This
is partly due to the fact that Belgium has three official lan-
guages, namely Dutch (Flemish), French and German. As a
consequence Flemish news broadcasts often comprise French
speech segments (German only occurs rarely). Furthermore, in-
ternational news regularly includes English speech that is sub-
titled. In documentaries on the other hand, a Flemish narrator
frequently clarifies subtitled foreign speech segments.

In an automatic subtitling scenario using Flemish, English
and French monolingual speech recognizers, one wants to as-
sign the speech stretches to the right recognizer. This calls for a
dedicated language recognition (LR) module as pre-processor.

The LR module itself benefits from a front-end that auto-
matically removes non-speech segments and that segments the
speech into speaker turns. Therefore, our LR module is config-
ured as an add-on to a speaker diarization system that conducts
non-speech removal, speaker segmentation, speaker clustering
and gender detection. In the final stage one can use all of the
generated information to produce speech transcriptions.

For this work, we assume that every speaker uses a single
language only. We therefore apply LR on the concatenation of
all data assigned to a speaker, hereafter called a speaker session.
If needed, the operation point of the speaker diarization could

be adjusted so that multilingual speaker sessions are likely to be
split into monolingual sessions with their own speaker IDs.

Motivated by the periodic NIST Language Recognition
Evaluation campaigns e.g. [1], several LR techniques have been
developed over the last couple of years. They can be regarded as
either phonotactic or acoustic. Phonotactic methods are based
on the frequencies of short phone sequences in the output of a
phone recognizer. The acoustic methods on the other hand di-
rectly classify the speech segments on the basis of their acoustic
properties.

As most current state-of-the-art acoustic approaches, our
system employs iVectors [2]. A desired property of iVectors
is that they provide fixed-length feature vectors per speaker ses-
sion, giving more freedom in the subsequent language classifier.
Contrary to the common practice in iVectors of modeling all im-
portant variability in the Total Variability space, we combine the
iVectors with Joint Factor Analysis (JFA) [3] in order to sepa-
rate the language variability from the channel variability. Sim-
ilar to [4, 5] we use the term channel variability to refer to all
sources of variability different from the language. Hence, in an
LR setup the channel factors encode both channel and speaker
variability. Each speaker session is thus characterized by a set of
language factors and channel factors and only the language fac-
tors –designed to contain all relevant language information– are
fed to a simple language classifier. Our method also replaces the
Voice Activity Detector (VAD) adopted in most state-of-the-art
systems with a novel frame selection strategy. This frame selec-
tion strategy contributes significantly to the high performance of
the system.

To evaluate the system, we compiled a dataset containing
monolingual and multilingual news broadcasts as well as a large
variety of documentaries. The system is judged on its ability
to identify the language of the speaker sessions. The collected
dataset exposes a large range of different background condi-
tions, ranging from clean studio recordings to noisy outdoor in-
terviews. It also contains a lot of reporters or politicians speak-
ing in a language that differs from their mother tongue, mean-
ing that they must be considered as non-native speakers of the
language they speak at that time. Our experiments show perfor-
mance gains up to 40% relative for the proposed system when
compared to a standard iVector system and up to 20% relative
when compared to a state-of-the-art eigenchannel compensated
GMM system with discriminatively trained models.

The next section briefly describes the acoustic and phono-
tactic approaches to language recognition. Section 3 handles
the state-of-the-art acoustic language recognition techniques in
detail. Section 4 details the proposed method. Experimental
results are reported in Section 5. The main conclusions of our
work are summarized in Section 6.
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2. Language recognition
2.1. Problem statement

For this work, we restricted the task to the automatic recogni-
tion of the spoken language for each speaker session given a
closed set of languages. We therefore limit the literature review
to closed-set language recognition. Dealing with out-of-set lan-
guages is outside the scope of this paper. A technique to tackle
this open-set LR problem by solely relying on data from the
target languages can be found for example in [6].

2.2. The phonotactic approach

The standard phonotactic approach, called PRLM (Phone Rec-
ognizer followed by Language Model) [7], comprises a single-
language phone recognizer followed by an N-gram language
model. Training data for each language are tokenized by the
phone recognizer, and the resulting symbol sequences are used
to estimate the conditional probabilities of the actual phone to-
ken given the N − 1 previous phone tokens for speech in that
language. Note that this approach does not need orthographic
nor phonetic labeling of training speech from the target lan-
guages. During language recognition the test segment is tok-
enized and for each target language, the probability that the to-
ken sequence was produced for that language is calculated. The
speech segment is then assigned to the language yielding the
highest score.

More recent phonotactic approaches [8, 9] run multiple
PRLM systems in parallel. In this so-called PPRLM approach,
each target language is represented by multiple N-gram lan-
guage models, one for each phone recognizer. In a final stage all
language model scores are then fed to a simple language classi-
fier, such as a Gaussian Back-end (see section 3.3.1).

2.3. The acoustic approach

Acoustic LR systems (explained in detail in Section 3) classify
speech segments on the basis of acoustic score vectors. One ap-
proach is to train one GMM per language to model the speech
frames of that language. An alternative is to have one model
describing speech in general and a set of transformations to
change this language agnostic model into language (and even
session) specific speech models. During evaluation, the acous-
tic models and transformations are employed to extract a fixed
length acoustic score vector for each speaker session which con-
tains information concerning the language spoken. This vector
is then supplied to a simple language classifier. As will be ex-
plained in the next sections, there exist different schemes for
extracting suitable acoustic score vectors.

Whereas until recently PPRLM outperformed the acoustic
approach, today the acoustic approach reaches a comparable
performance, but at a much lower computational expense. That
is why our primary focus is on the implementation of an acous-
tic LR system for the television domain. When computational
load is not an issue, one can raise the performance level by fus-
ing the the acoustic and the phonotactic approach in a single
system, as in [9, 10] for instance.

3. Baseline acoustic language recognition
In this section we describe the acoustic approach in more de-
tail. We discern three steps in the process: (1) the creation of an
acoustic model for the language, (2) the extraction of an acous-
tic score vector and (3) the classification of that score vector
into languages.

3.1. Creation of the acoustic models

3.1.1. SDC feature extraction

Research in GMM-based automatic language recognition sug-
gests that shifted delta cepstral (SDC) feature vectors [11] con-
stitute a richer representation of the signal dynamics than the
standard dynamical features derived from the MFCCs. The
SDC features are defined by four parameters: N , d, P and k.
The first (2k+1)N features of frame t are simply the delta’s of
the N static MFCCs c1 . . . cN , computed for the frames t+ iP
(i = −k . . . k). A delta at frame t is computed over the win-
dow (t−d, t+d). Most implementations (usually operating on
telephone speech) opt for N = 7, d = 2, P = 3 and k = 3.
We found N = 10, d = 2, P = 3 and k = 2 to work slightly
better on broadband data at the same level of complexity. Sup-
plementing the SDCs with 19 static MFCCs (the c1 . . . c19 of
frame t) and a normalized log-energy finally leads to a feature
vector of dimension 70.

3.1.2. Feature normalization and frame selection

Several methods can be applied to make the features more ro-
bust against additive noise and channel mismatch, such as Cep-
stral Mean Subtraction (CMS), Cepstral Variance and Mean
Normalization (CMVN) and Feature Warping [12]. The lat-
ter technique transforms the individual features via a mono-
tonic non-linear function so that their distribution over the pro-
cessed time interval fits the standard normal distribution. For
this work, we applied Feature Warping on complete speaker
sessions rather than using a sliding window approach because
we observed that different noise/channel conditions usually give
rise to different speaker sessions in our diarization system,
meaning that the within session changes will be small.

In most systems, the normalization is applied on the speech
frames only. A Voice Activity Detector (VAD) is employed to
eliminate the non-speech frames. This VAD can be as complex
as a phone recognizer that detects the speech and the non-speech
sounds, as in e.g. [5].

3.1.3. GMM training

For each target language a GMM is trained (or a GMM per gen-
der if gender information is available). One usually starts with
the training of an Universal Background Model (UBM) on ma-
terial that comprises data of all target languages and one con-
ducts a number of Maximum Likelihood (ML) training itera-
tions on material from the target language to obtain the envis-
aged target language specific models.

As was shown in [9], continuing the ML training with
some discriminative training such as Maximum Mutual Infor-
mation (MMI) training, can provide significant performance
gains. The objective of the MMI training is to maximize the
posterior probability of the correct language per speaker ses-
sion. Note that to avoid learning the language priors from the
training data, the statistics in the MMI re-estimation formulas
must be weighed [9].

3.2. Extraction of score vectors

3.2.1. Model evaluation

The most obvious technique is to compute the mean log-
likelihood scores (over the selected frames of the speaker ses-
sion) of the individual language specific models (ML or MMI
trained) and to consider these as the elements of the acoustic
score vector ys.
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3.2.2. Eigenchannel adaptation of the models

The scores obtained with the model evaluation are negatively
affected by the variability between speakers: instead of being
purely based on the language being spoken, part of the score
will reflect the affinity between the voice characteristics and
channel conditions of the test speakers and the speakers in the
training data for a language. As was shown in [5], this can be
effectively compensated for with a simplified version of Joint
Factor Analysis (JFA) [3], which the authors termed eigenchan-
nel adaptation in the model domain. The idea underlying JFA is
that the inter-class variability and inter-session variability (due
to differences in speaker, channel, circumstances, etc.) can to
some extent be modeled in different acoustic subspaces.

The eigenchannel adaptation computes the score vector of a
speaker session by first converting each language specific model
Ml to a language specific and session specific modelMl|s and
by then evaluating these adapted models on the speaker data.
The model adaptation is constrained to an adaptation of the
Gaussian means, and it maintains the mixture weights and the
mixture covariances. The supervector of the mixture means of
Ml|s is modeled as

ml|s =ml + Txs|l (1)
where T is a low-rank matrix defining the R-dimensional sub-
space which best explains speaker and channel effects.

The elements of xs|l are called the channel factors and are
defined by

xs|l = argmax
x
L(Os|Ml|s(x))N (x;0, I), (2)

withL(Os|Ml|s) being the likelihood of speaker dataOs given
the session-adapted model Ml|s. The factor N (x;0, I) en-
forces a normal prior distribution on the channel factors. We
call xs|l the MAP point estimate of x.

The mathematical procedure for extracting the channel fac-
tors xs|l from a model Ml with M mixtures is explained
in [13]. If ml,m represents the component of the mean super
vector that corresponds with mixture m and Σl,m is the corre-
sponding covariance matrix, one obtains that
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In these equations, ot is the feature vector at time t and γm
t

is the occupation probability of mixture m according to model

Ml at that time. Furthermore, Σ
− 1

2
l,m is the Cholesky decompo-

sition of the inverse of Σl,m. Matrix Tn,m in (3) and (4) is a
normalized version of Tm, the submatrix of T corresponding to
mixture m:

Tn,m = Σ
− 1

2
l,mTm (7)

The channel variability matrix T is obtained by means of
Principal Component Analysis (PCA) initialization [14] fol-
lowed by several iterations of the non-simplified Expectation-
Maximization (EM) algorithm described in [13] until it con-
verges. Note that during evaluation one does not know the

language of the speaker, and consequently, one also adapts
the models that do not correspond to the language spoken by
the speaker. Therefore it is of the utmost importance that T
does not represent too much language variability. This is real-
ized during the training of matrix T . First, by calculating the
eigenvectors on the within-language (within-class) covariance
matrix during PCA initialization. Secondly, we use the UBM
model parameters and occupation probabilities probabilities in
the EM-algorithm, but as motivated in [3] we center the first
order statistics fs (identical to (6)) around the language (class)
ML means of the annotated speaker language, rather than cen-
tering it around the UBM means. This assumes that language
effects are common to all speakers of a language. It also as-
sumes that most of the session specific effects are language in-
dependent and hence can be learned more efficiently by pooling
the data from all languages. A final assumption is that the chan-
nel conditions are fixed within a speaker session, otherwise the
session would have been split up.

3.2.3. Eigenchannel adaptation in the feature domain

Adapting ML trained models is a logical thing to do, but adapt-
ing discriminative MMI models using an ML/MAP based tech-
nique seems rather counterintuitive. Therefore, the authors
in [5] suggest to perform adaptation in the feature domain and to
train discriminative models subsequently in the usual way. Each
observation feature vector ot of speaker s is projected onto a
session-independent subspace:

o′t = ot − Tmtxs (8)

and the channel factors xs are estimated by using the UBM in-
stead of the language specific models. Now, Tmt is the subma-
trix of T that corresponds to the best scoring mixture mt of the
considered frame. The channel variability matrix T is identical
to the one described in Section 3.2.2. The selection of the best
scoring mixture is a straightforward way to convert the shift in
the supervector domain to a shift in the feature domain.

3.2.4. iVector extraction

A favored concept in LR is that of iVectors [2] or Total Variabil-
ity (TV) modeling. Unlike JFA, iVectors model all variability
in a single low dimensional subspace. A low rank rectangular
matrix U , called the TV matrix or the iVector extractor, is used
to approximate the session-dependent GMM supervectorms

ms =m+Uxs,Ls (9)

withm being the UBM supervector andxs,Ls being the iVector
which contains information about the session of speaker s and
the language Ls spoken by that speaker.

The training ofU is similar to the training ofT in the eigen-
channel approach, but the PCA initialization now calculates the
eigenvectors of the covariance matrix instead of the within-class
covariance matrix. The EM-algorithm uses the UBM occupa-
tion probabilities and the UBM model parameters. The first
order moments fs (see (6)) are now centered around the UBM
means, so that matrix U represents all sources of variability.

The technique described in Section 3.2.2 is used to extract
the iVector xs,Ls , but again we employ an UBM model instead
of language specific models. We can interpret xs,Ls as coordi-
nates in the TV subspace of the model parameter space defined
by matrix U . Instead of evaluating the adapted model, we use
the iVectors directly as a feature vector ys for the language clas-
sifier.
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3.3. Language classification of the score vectors

In this section we briefly recall two popular methods for classi-
fying the score vectors by means of a classifier needing only a
few design parameters.

3.3.1. Gaussian Back-end

Several state-of-the-art LR approaches (e.g. [6], [5], [15]) work
with a Gaussian Back-end (GB). It models the distribution of
the score vectors y of target language l by means of a mul-
tivariate normal distribution N (µl,Σ), meaning that one full
covariance matrix is shared by all the target languages. The
classification is then based on the following language score:

y∗s,l = (Σ−1µl)
Tys −

1

2
µT

l Σ−1µl (10)

with l indexing the target language. This equation is obtained by
calculating the loglikelihood of vector ys. Since the covariance
matrix is shared, we can not only drop the constant term but also
the language-independent quadratic term.

The output of a GB can be further calibrated with discrim-
inative multi-class logistic regression [6]. However, for our ex-
periments this step was omitted since it did not improve the
results.

3.3.2. Cosine distance scoring

As iVector components are coordinates in the Total Variability
subspace they have a clear geometric interpretation. This ex-
plains why some systems use Cosine Distance Scoring (CDS)
as a basis for LR [10]. In order to apply CDS, one first con-
ducts a Linear Discriminant Analysis (LDA) on the iVectors to
maximize the inter-class variability while minimizing the intra-
class variability. This step reduces the dimensionality of the
vectors to the number of languages minus one. The resulting
vectors are normalized to have a unit length. Finally, by assum-
ing that each language can be modeled by a von Mises-Fisher
distribution, one can retrieve the ML mean of language l from
the normalized vectors y′s as follows:

µl =

∑
∀s∈l y

′
s

‖
∑
∀s∈l y

′
s‖

(11)

The sum is taken over all speaker sessions belonging to the
training data for language l. By further assuming an identical
spread for all language distributions we can extract the language
score y∗s,l for a test segment y′s:

y∗s,l = µ
T
l y
′
s (12)

3.3.3. Converting the scores to posteriors

We use the scores y∗s,l (estimated by the GB or the CDS) and
priors Pl to obtain the posterior probability distribution of lan-
guage l given speaker s:

P (l|s) =

(
Nl∑
j=1

Pje
y∗
s,j

)−1

Ple
y∗
s,l (13)

with Nl the number of target languages. The language l
yielding the maximum posterior probability is then selected as
the recognition result. We assume an uniform prior distribu-
tion. A better estimation of the prior distribution is obviously
possible, but is currently not considered.

4. Proposed methods
4.1. Frame selection

In a conventional system, the LR is performed on the speech
frames, and these frames are selected by means of a VAD. How-
ever, since in the television domain a lot of the speech can be
characterized as speech over music and other noises, it is im-
portant to use a frame selection scheme that basically selects
the same frames irrespective of the characteristics (energy, tim-
bre) of the noise. Therefore, we propose a simple and robust
frame selection scheme that mainly selects frames from the syl-
lable nuclei because these most energetic frames will be the
least affected by the noise. The selection algorithm tracks the
log-energy logE(t) (natural logarithm) and converts it to a nor-
malized log-energy that is equal to zero when the log-energy is
equal to a running mean log-energy logE(t) and positive when
it is larger. The running mean is computed by means of a leaky
integrator with a time constant of 5 seconds. The normalized
log-energy is given by:

logEnrm(t) = logE(t)− logE(t) (14)

A VAD-like configuration discarding all frames with a
logEnrm(t) < −2 results in the removal of all frames with an
energy level that is more than 8.7 dB below the running mean
energy. A syllable nucleus detector-like configuration with a
positive threshold of 0.5 on the other hand results in the elimi-
nation of more than 50% of the frames in a clean speech utter-
ance. Nevertheless, doing so turns out to improve the LR on our
type of data (see experiments).

4.2. Eigenchannel adaptation for MMI-trained models

Inter-session variability can be expected to have a negative in-
fluence on the performance of discriminatively trained models,
just as it does on ML-trained models (see Section 3.2.2). We
therefore apply eigenchannel adaptation on the discriminatively
trained models as well. At first, it may seem counterintuitive to
apply an ML-based technique on discriminatively trained mod-
els. Although the ML-based eigenchannel adaptation can be
expected to annihilate some of the extra discriminative power
introduced by the MMI-training, we expect that suppressing
the negative effects of the channel variability will outweigh the
small loss in discriminative power.

Note that the MMI-models are based on ML-trained mod-
els which themselves are derived from a common UBM. Hence,
it is not unreasonable to assume that the shifts in the Gaussian
means related to speaker changes in the ML-trained and MMI-
trained models are strongly correlated. As such, one may argue
that the ML-based channel variability matrix T derived accord-
ing to the recipe outlines in Section 3.2.2 can be applied un-
changed to the MMI-trained models. We also tested a small
variation on this scheme in which the first order moments in (6)
are centered around the means ml of the MMI-trained GMMs
rather than around the means of the ML-trained models. Both
approaches lead to comparable improvements.

4.3. iVector-based language factor extraction

Compared to systems that compute the scores of language spe-
cific models, the iVector approach has two advantages. First,
the computational load is substantially lower: iVector systems
only have to estimate UBM occupation probabilities, which
compares favorable to the evaluation (and re-evaluation when
eigenchannel adaptation is used) of a set of language specific
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models otherwise. Secondly, the dimension of the iVector is a
design parameter and hence can be tuned for optimal perfor-
mance: high enough so that no essential information is lost and
low enough to suppress unwanted variability.

In iVector approaches for speaker identification, one typi-
cally considers the Total Variability, i.e. the matrix U models
both speaker and channel variability. This choice can be ex-
plained with a combination of factors [2]: it may not be possible
to obtain a good separation between channel and speaker, the
channel may in many setups carry some (unwanted) information
about the speaker, and the final classifier will suppress the non-
informative channel variability. When ported to the language
recognition domain, one can distinguish two major contributors
to the total variability: the language and the channel (includ-
ing speaker variability). In our LR setup, we do not expect that
speakers in the training data will reoccur in the test data, hence
the channel variability can be expected to carry no language in-
formation at all. We therefore tried to separate (factorize) the
two sources of variability in order to remove the unwanted one
(the channel variability) completely.

In Joint Factor Analysis [3], the contributing factors are
both modeled in sub-spaces which are automatically found by
an EM algorithm. Let T be the channel variability matrix as de-
fined in Section 3.2.2 and let V be the language variability ma-
trix. Since the number of languages is small, there is no need to
rely on the EM algorithm for finding a compact representation
V of the language sub-space. Instead, we assign one vector di-
rectly to each of the languages and set the values of the column
vectors Vl of V equal to the offset between the ML supervector
ml of the corresponding language l (obtained by ML training
initialized with the UBM) and the UBM supervectorm:

Vl =ml −m (15)

This ensures that the UBM can be shifted towards the language
dependent GMMs when performing language model adaptation
with matrix V . Combining channel variability and language
variability modeling results in the following expression for the
mean supervectorms of the session-dependent GMM:

ms =m+ V xLs + Txs (16)

with m being the UBM supervector. We will refer to xLs and
xs as the language and channel factors respectively. These fac-
tors can be extracted simultaneously by stacking V and T into
one matrix and by following the standard procedure as in con-
ventional iVector extraction. In the end we obtain a vector x
which can be decomposed as x = [xLs ; xs] and all relevant
language information is supposed to be included in xLs . We
will feed this low-dimensional score vector to a GB or a CDS
language classifier.

5. Experiments and Results
5.1. Experimental setup

In the conducted LR experiments, the speech segments are
known to be spoken in one of the three most relevant languages
for Flemish broadcast data: English, Flemish and French. The
impact of the presence of out-of-set languages, the occurrence
of diarization errors and speaker sessions containing speech of
multiple spoken languages are beyond the scope of this paper.
Also telephone speech segments are currently discarded as our
training data largely consists of broadband speech.

5.2. Data

5.2.1. Training and development set

The Flemish training and development data are taken from the
CGN corpus [16]: 23 hours of speech (935 speakers) are used
for model training and another 6 hours of speech (240 speakers)
act as development data. The English models are trained on 63
hours of speech from the 1996 HUB4 Broadcast News training
data (3748 speakers). The remaining 3 hours (90 speakers) con-
stitute our development set. Since we had no regular corpus of
French broadcast news at our disposal, we harvested 16 hours of
speech from public RTBF podcasts1 (403 speakers) as training
data and 7 hours (137 speakers) as development data. RTBF is
the public broadcasting organization of the French Community
of Belgium and its website offers a wide variety of shows. The
semi-automatic annotation of this material started from the out-
puts of our diarization tool. Segment boundaries and speaker
labels were corrected where needed and language labels were
added.

5.2.2. Evaluation data

The investigated techniques are evaluated on a custom dataset.
The annotations were manually verified and language labels
were added for each speaker. In the rare case of a speaker
switching between two languages in the evaluation data, the
speaker session was manually split into two sessions.

The so-called MONO part of the evaluation data consists of
3 hours of monolingual files per language. The Flemish data is
retrieved from Flemish news broadcasts of the Flemish public
broadcaster2 VRT. The English data is the 1997 HUB4 Broad-
cast News corpus. The French data is extracted from French
radio podcasts3.

The BN (broadcast news) part of the evaluation data con-
sists of 9 hours of news shows of the public and the commercial
Flemish broadcaster4. The speech is uttered by 658 speakers
and Flemish covers 90% of the speech, English accounts for
5% and French makes up for 3%. The remaining 2% repre-
sent a large range of out-of-set languages and were currently
discarded during testing.

The DOCU part of the evaluation data consists of 10 hours
of documentaries, broadcasted by VRT. It holds a completely
different language distribution: Flemish 40%, English 22% and
French 38%. Out-of-set languages are again discarded.

Details of the language and speaker session distribution of
each test set can be found in Tables 1 and 2.

Table 1: Frame-based language distribution (%) of each evalu-
ation subset.

EN FL FR

MONO 29.8 31.0 39.2
BN 5.1 91.9 3.0

DOCU 22.4 39.7 37.9

1http://www.rtbf.be/radio/podcast
2http://www.vrt.be
3http://www.rfi.fr
4http://www.vtm.be
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Table 2: Number of speaker sessions for each evaluation subset
per language.

EN FL FR total

MONO 92 139 92 323
BN 91 524 45 660

DOCU 53 23 113 189

5.3. Evaluation Measures

To quantify performance, we compute the Session Error Rate
(SER) as the percentage of incorrectly classified speaker ses-
sions. However, since the SER strongly depends on the prior
language probabilities, we also introduce the ratio between the
mutual information I(X,Y ) between the recognized and the
correct languages and the prior information (entropy) H(X) of
the correct language as an evaluation measure that is less af-
fected by the priors. This normalized mutual information is de-
noted as CY X and is given by

CY X =
I(X;Y )

H(X)
(17)

The perfect classifier yields a CY X = 1. The probabilities
needed for calculating CY X are retrieved from the confusion
matrix summarizing the LR results.

The discussed measures are session-based because the LR
algorithms make a decision per speaker session. The Frame
Error Rate (FER) defined by the percentage of misclassified
frames is also relevant as it is more directly related to the im-
pact of the classification errors on the performance of e.g. the
speech recognizers that are called on the basis of the recognized
language label. In a few cases we also mention the FER as a
performance measure.

5.4. Results for baseline acoustic systems

In this section we report the results for six baseline systems:
ML and MMI trained models, ML models with eigenchannel
adaptation, MMI models trained on eigenchannel compensated
features and two iVector systems, one with a GB and the other
with a CDS classifier. The number of GMM mixtures is always
256 and model parameters are always updated in maximum 20
ML and MMI training iterations. The optimal rank R of the
channel variability matrix T and the iVector extractor U were
both 50. All GMMs are optimized on the training set, the lan-
guage classifiers on the development set. This avoids too much
calibration to the training data.

5.4.1. Feature selection and normalization

Initial experiments showed that the performance of all systems
is significantly affected by the scheme that selects the frames on
which to base the characterization of a speaker session. Since
we want to focus on the differences between the LR meth-
ods, we compared all methods in combination with the same
frame selection scheme. We opted for the proposed frame selec-
tion scheme as this proved to be superior to the standard VAD
scheme. The threshold was tuned on the development set us-
ing the ML system without eigenchannel adaptation. Figure 1
shows that a VAD-like configuration (negative threshold) per-
forms significantly worse than a syllable nucleus detector-like
configuration (positive threshold), as anticipated.
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Figure 1: 100-SER (%) and CY X (%) of the basic GMM ML
system on the development data as a function of the frame se-
lection threshold.

Setting the threshold to 0.5 results in the removal of more
than 50% of the frames inside a speech segment. Obviously,
information of the discarded frames is not completely lost due to
the fact that SDC features are calculated over 170 ms windows.
We adopt this selection threshold in all further experiments.

The performance of the same ML system on the evalua-
tion data for a VAD scheme vs. the adopted selection scheme is
listed in Table 3 and confirms the trend visible in Figure 1.

Table 3: Performance of the basic ML system in % on the eval-
uation data in function of the frame selection threshold

selection threshold -2.0 0.5

MONO SER 7.4 3.7
CY X 75.9 85.3

BN SER 20.3 11.7
CY X 33.9 47.0

DOCU SER 21.7 15.9
CY X 47.6 57.4

Note that there is a huge performance difference between
the different datasets. The SER ranges from 3.7% for MONO to
15.9% for DOCU. This can be explained by the fact that MONO
mainly contains well trained speakers speaking a long time in
favorable conditions (studio). In DOCU there are a lot of non-
native speakers and the well-trained narrative voice is speaking
over background noise, including non-native speech.

5.4.2. Comparison of baseline systems

The SER and CY X performance of the six baseline systems are
summarized in the upper parts of Tables 4 and 5. Training the
language specific models discriminatively (MMI) results in a
drop of the SER by 7-8% relative compared to the ML system.
This is substantially lower than the 50% relative improvement
reported in [9]. When looking at the normalized mutual infor-
mation, the improvement is even less convincing. This appar-
ently unexpected result can be owed to the large mismatch there
is between the training and the evaluation data, a phenomenon
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that typically has a detrimental effect on the performance of dis-
criminative methods. This may also explain why the discrim-
inative multi-class logistic regression back-end (mentioned in
Section 3.3.1) did not lead to better results.

Table 4: Session Error Rate (%) of the baseline systems and
proposed systems on the complete evaluation set. The lower the
better.

MONO BN DOCU

ML + GB 3.7 11.7 15.9
MMI + GB 3.4 10.8 14.8
ML + eigchan. + GB 2.5 7.9 10.6
feat. eigchan. + MMI + GB 2.5 9.5 9.0
iVectors + GB 4.0 11.7 9.5
iVectors + LDA + CDS 2.5 11.8 7.9

MMI + eigchan. + GB 1.9 8.5 9.0
xLs + GB 2.5 7.6 8.5
xLs + LDA + CDS 1.5 7.3 9.0

Table 5: Normalized Mutual Information CY X (%) of the base-
line systems and proposed systems on the complete evaluation
set. The higher the better.

MONO BN DOCU

ML + GB 85.3 47.0 57.4
MMI + GB 85.9 52.7 55.5
ML + eigchan. + GB 89.0 59.5 66.1
feat. eigchan. + MMI + GB 89.3 56.5 67.7
iVectors + GB 86.2 55.0 66.7
iVectors + LDA + CDS 89.7 53.1 68.1

MMI + eigchan. + GB 91.5 60.8 68.1
xLs + GB 90.3 64.5 68.6
xLs + LDA + CDS 92.6 62.7 66.8

The performance gains obtained by applying eigenchan-
nel adaptation on the other hand, are substantial. The SER
reduces by 33% relative on all subsets when applying eigen-
channel compensation in combination with ML models. The
gains remain comparable in the case of MMI models, indicating
that, at least for our test data, suppressing the negative effects
of the inter-session variability is more important than increasing
the discriminative power via MMI-based training as was antic-
ipated in Section 4.2. Everything considered, in combination
with eigenchannel compensation there is no significant differ-
ence in performance between the MMI and ML trained models.

Another conclusion is that the iVector methods can compete
very well with the other baseline methods which are four to six
times more time consuming. The latter is due to the fact that the
iVector systems only have to estimate UBM occupation proba-
bilities whereas the MMI eigenchannel system has to evaluate
the UBM and the three language models. The ML eigenchannel
system even has to evaluate all three language models twice. In
terms of SER, the CDS seems to outperform the GB on two of
the three evaluation sets, but these differences are not statisti-
cally significant.

For the sake of completeness we mention that the Frame
Error Rates (FERs) for the iVector system with CDS are 0.7%,
4.8% and 4.9% for MONO, BN and DOCU respectively. These

FERs clearly confirm the expectation that LR improves as the
length of the speaker session increases.

5.5. Results for the proposed methods

The results for the proposed methods are summarized in the
lower parts of Tables 4 and 5. We evaluate model-space eigen-
channel adaptation (as opposed to the baseline feature-based
eigenchannel adaptation) of the MMI models and language fac-
tor extraction (denoted by xLs ) in combination with two dif-
ferent language classifiers (GB, LDA + CDS). All GMMs are
optimized on the training set and the language classifiers are
optimized on the development set. The rank of the channel
variability matrix was fixed to R=50, a value that was found
optimal for the baseline systems. Figure 2 depicts the perfor-
mance of the three proposed systems and the two best baseline
systems (MMI system with eigenchannel compensation in the
feature domain and iVectors with LDA+CDS). In the next sub-
sections we discuss these results in more detail.
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Figure 2: Session Error Rate (%) and Normalized Mutual In-
formation (%) of the two top performing baseline systems vs all
the proposed systems on the complete evaluation set.

5.5.1. Eigenchannel adaptation on MMI models

The result tables show that eigenchannel adaptation of MMI
models yields an improvement over the baseline systems on
two of the three evaluation sets and does not hurt the perfor-
mance on the third set. The CY X values improve on all three
data sets. The reported results use the channel variability ma-
trix of the ML baseline system. The alternative channel vari-
ability matrix which employs the MMI model means instead
of the ML model means (see Section 4.2) provided compara-
ble results. This shows that the assumptions underlying Sec-
tion 4.2 hold: the channel variability subspace computed with
an ML-based technique can be readily combined with a discrim-
inatively trained model, and the ML-based eigenchannel adap-
tation does not completely annihilate the extra discriminative
power introduced by the MMI training.

5.5.2. Language factor extraction

The results show that significant improvements over baseline
iVector systems can be obtained by factorizing the observed
variability in language components and channel components
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and feeding only the language components to the final classi-
fier (GB or LDA+CDS).

The GB and LDA+CDS language factor system yield com-
parable results and both reduce the SER on the MONO and BN
data of their corresponding iVector system by 40% relative. The
SER differences on the DOCU data are not statistically signif-
icant as they correspond to two errors only. The CY X values
confirm the improvement on MONO and BN.

The LDA+CDS system can outperform the top perform-
ing loglikelihood-score based system (model-adapted MMI) by
15-20% relative and this at a much lower computational cost.
Again, we see no significant performance changes on DOCU.

To conclude this section we also look at the frame error
rates of the LDA+CDS system. It yields FERs of 0.3%, 2.7%
and 5.4% on the MONO, BN and DOCU datasets respectively.
The improvements in FER over the baseline systems on MONO
and BN are substantial.

6. Conclusion
In this paper, we proposed a language recognition system for
mixed-language TV broadcasts. We made a thorough analysis
of some recently developed methods for speaker and language
recognition (LR) that have shown to work well in the telephone
domain and we introduced two additions to these existing ap-
proaches.

First, we improved the frame selection, an indispensable
part of any LR system. By means of a simple energy-based se-
lection criterion that can be configured as a selector of speech
frames (= voice activity detector) to a selector of mainly sylla-
ble nuclei we showed that for the TV broadcast domain, it is
extremely important to focus on the syllable nuclei. This re-
duces the variability since syllable nuclei are more resistant to
the presence of background noise and since centering the se-
lected features around the syllable nuclei reduces the variability
in how the audio is presented to the subsequent GMM.

Secondly, we separated the variability in a language depen-
dent part and the remainder which is mainly envisioned to repre-
sent speaker and channel variability. This separation simplifies
the task of the final language classifier. This novelty may not
be fundamental in terms of theory but nevertheless it yields a
substantial gain in performance on two of the three datasets on
which they were evaluated.
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