26,092 research outputs found

    Discriminative Methods for Multi-Labeled Classification

    Get PDF
    In this paper we present methods of enhancing existing discriminative classifiers for multi-labeled predictions. Discriminative methods like support vector machines perform very well for uni-labeled text classification tasks. Multi-labeled classification is a harder task subject to relatively less attention. In the multi-labeled setting, classes are often related to each other or part of a is-a hierarchy. We present a new technique for combining text features and features indicating relationships between classes, which can be used with any discriminative algorithm

    Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive Person Re-Identification

    Full text link
    Unsupervised domain adaptive person Re-IDentification (ReID) is challenging because of the large domain gap between source and target domains, as well as the lackage of labeled data on the target domain. This paper tackles this challenge through jointly enforcing visual and temporal consistency in the combination of a local one-hot classification and a global multi-class classification. The local one-hot classification assigns images in a training batch with different person IDs, then adopts a Self-Adaptive Classification (SAC) model to classify them. The global multi-class classification is achieved by predicting labels on the entire unlabeled training set with the Memory-based Temporal-guided Cluster (MTC). MTC predicts multi-class labels by considering both visual similarity and temporal consistency to ensure the quality of label prediction. The two classification models are combined in a unified framework, which effectively leverages the unlabeled data for discriminative feature learning. Experimental results on three large-scale ReID datasets demonstrate the superiority of proposed method in both unsupervised and unsupervised domain adaptive ReID tasks. For example, under unsupervised setting, our method outperforms recent unsupervised domain adaptive methods, which leverage more labels for training

    Score Function Features for Discriminative Learning: Matrix and Tensor Framework

    Get PDF
    Feature learning forms the cornerstone for tackling challenging learning problems in domains such as speech, computer vision and natural language processing. In this paper, we consider a novel class of matrix and tensor-valued features, which can be pre-trained using unlabeled samples. We present efficient algorithms for extracting discriminative information, given these pre-trained features and labeled samples for any related task. Our class of features are based on higher-order score functions, which capture local variations in the probability density function of the input. We establish a theoretical framework to characterize the nature of discriminative information that can be extracted from score-function features, when used in conjunction with labeled samples. We employ efficient spectral decomposition algorithms (on matrices and tensors) for extracting discriminative components. The advantage of employing tensor-valued features is that we can extract richer discriminative information in the form of an overcomplete representations. Thus, we present a novel framework for employing generative models of the input for discriminative learning.Comment: 29 page

    Semi-Supervised Sparse Coding

    Full text link
    Sparse coding approximates the data sample as a sparse linear combination of some basic codewords and uses the sparse codes as new presentations. In this paper, we investigate learning discriminative sparse codes by sparse coding in a semi-supervised manner, where only a few training samples are labeled. By using the manifold structure spanned by the data set of both labeled and unlabeled samples and the constraints provided by the labels of the labeled samples, we learn the variable class labels for all the samples. Furthermore, to improve the discriminative ability of the learned sparse codes, we assume that the class labels could be predicted from the sparse codes directly using a linear classifier. By solving the codebook, sparse codes, class labels and classifier parameters simultaneously in a unified objective function, we develop a semi-supervised sparse coding algorithm. Experiments on two real-world pattern recognition problems demonstrate the advantage of the proposed methods over supervised sparse coding methods on partially labeled data sets

    Deep Attributes Driven Multi-Camera Person Re-identification

    Full text link
    The visual appearance of a person is easily affected by many factors like pose variations, viewpoint changes and camera parameter differences. This makes person Re-Identification (ReID) among multiple cameras a very challenging task. This work is motivated to learn mid-level human attributes which are robust to such visual appearance variations. And we propose a semi-supervised attribute learning framework which progressively boosts the accuracy of attributes only using a limited number of labeled data. Specifically, this framework involves a three-stage training. A deep Convolutional Neural Network (dCNN) is first trained on an independent dataset labeled with attributes. Then it is fine-tuned on another dataset only labeled with person IDs using our defined triplet loss. Finally, the updated dCNN predicts attribute labels for the target dataset, which is combined with the independent dataset for the final round of fine-tuning. The predicted attributes, namely \emph{deep attributes} exhibit superior generalization ability across different datasets. By directly using the deep attributes with simple Cosine distance, we have obtained surprisingly good accuracy on four person ReID datasets. Experiments also show that a simple metric learning modular further boosts our method, making it significantly outperform many recent works.Comment: Person Re-identification; 17 pages; 5 figures; In IEEE ECCV 201
    corecore