4,434 research outputs found

    Discriminatively Trained Latent Ordinal Model for Video Classification

    Full text link
    We study the problem of video classification for facial analysis and human action recognition. We propose a novel weakly supervised learning method that models the video as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for "smile", running and jumping for "highjump"). The proposed model is inspired by the recent works on Multiple Instance Learning and latent SVM/HCRF -- it extends such frameworks to model the ordinal aspect in the videos, approximately. We obtain consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis datasets for prediction of expression, clinical pain and intent in dyadic conversations and on three challenging human action datasets. We also validate the method with qualitative results and show that they largely support the intuitions behind the method.Comment: Paper accepted in IEEE TPAMI. arXiv admin note: substantial text overlap with arXiv:1604.0150

    Towards Active Event Recognition

    No full text
    Directing robot attention to recognise activities and to anticipate events like goal-directed actions is a crucial skill for human-robot interaction. Unfortunately, issues like intrinsic time constraints, the spatially distributed nature of the entailed information sources, and the existence of a multitude of unobservable states affecting the system, like latent intentions, have long rendered achievement of such skills a rather elusive goal. The problem tests the limits of current attention control systems. It requires an integrated solution for tracking, exploration and recognition, which traditionally have been seen as separate problems in active vision.We propose a probabilistic generative framework based on a mixture of Kalman filters and information gain maximisation that uses predictions in both recognition and attention-control. This framework can efficiently use the observations of one element in a dynamic environment to provide information on other elements, and consequently enables guided exploration.Interestingly, the sensors-control policy, directly derived from first principles, represents the intuitive trade-off between finding the most discriminative clues and maintaining overall awareness.Experiments on a simulated humanoid robot observing a human executing goal-oriented actions demonstrated improvement on recognition time and precision over baseline systems

    Multi-Action Recognition via Stochastic Modelling of Optical Flow and Gradients

    Get PDF
    In this paper we propose a novel approach to multi-action recognition that performs joint segmentation and classification. This approach models each action using a Gaussian mixture using robust low-dimensional action features. Segmentation is achieved by performing classification on overlapping temporal windows, which are then merged to produce the final result. This approach is considerably less complicated than previous methods which use dynamic programming or computationally expensive hidden Markov models (HMMs). Initial experiments on a stitched version of the KTH dataset show that the proposed approach achieves an accuracy of 78.3%, outperforming a recent HMM-based approach which obtained 71.2%

    Inferring Complex Activities for Context-aware Systems within Smart Environments

    Get PDF
    The rising ageing population worldwide and the prevalence of age-related conditions such as physical fragility, mental impairments and chronic diseases have significantly impacted the quality of life and caused a shortage of health and care services. Over-stretched healthcare providers are leading to a paradigm shift in public healthcare provisioning. Thus, Ambient Assisted Living (AAL) using Smart Homes (SH) technologies has been rigorously investigated to help address the aforementioned problems. Human Activity Recognition (HAR) is a critical component in AAL systems which enables applications such as just-in-time assistance, behaviour analysis, anomalies detection and emergency notifications. This thesis is aimed at investigating challenges faced in accurately recognising Activities of Daily Living (ADLs) performed by single or multiple inhabitants within smart environments. Specifically, this thesis explores five complementary research challenges in HAR. The first study contributes to knowledge by developing a semantic-enabled data segmentation approach with user-preferences. The second study takes the segmented set of sensor data to investigate and recognise human ADLs at multi-granular action level; coarse- and fine-grained action level. At the coarse-grained actions level, semantic relationships between the sensor, object and ADLs are deduced, whereas, at fine-grained action level, object usage at the satisfactory threshold with the evidence fused from multimodal sensor data is leveraged to verify the intended actions. Moreover, due to imprecise/vague interpretations of multimodal sensors and data fusion challenges, fuzzy set theory and fuzzy web ontology language (fuzzy-OWL) are leveraged. The third study focuses on incorporating uncertainties caused in HAR due to factors such as technological failure, object malfunction, and human errors. Hence, existing studies uncertainty theories and approaches are analysed and based on the findings, probabilistic ontology (PR-OWL) based HAR approach is proposed. The fourth study extends the first three studies to distinguish activities conducted by more than one inhabitant in a shared smart environment with the use of discriminative sensor-based techniques and time-series pattern analysis. The final study investigates in a suitable system architecture with a real-time smart environment tailored to AAL system and proposes microservices architecture with sensor-based off-the-shelf and bespoke sensing methods. The initial semantic-enabled data segmentation study was evaluated with 100% and 97.8% accuracy to segment sensor events under single and mixed activities scenarios. However, the average classification time taken to segment each sensor events have suffered from 3971ms and 62183ms for single and mixed activities scenarios, respectively. The second study to detect fine-grained-level user actions was evaluated with 30 and 153 fuzzy rules to detect two fine-grained movements with a pre-collected dataset from the real-time smart environment. The result of the second study indicate good average accuracy of 83.33% and 100% but with the high average duration of 24648ms and 105318ms, and posing further challenges for the scalability of fusion rule creations. The third study was evaluated by incorporating PR-OWL ontology with ADL ontologies and Semantic-Sensor-Network (SSN) ontology to define four types of uncertainties presented in the kitchen-based activity. The fourth study illustrated a case study to extended single-user AR to multi-user AR by combining RFID tags and fingerprint sensors discriminative sensors to identify and associate user actions with the aid of time-series analysis. The last study responds to the computations and performance requirements for the four studies by analysing and proposing microservices-based system architecture for AAL system. A future research investigation towards adopting fog/edge computing paradigms from cloud computing is discussed for higher availability, reduced network traffic/energy, cost, and creating a decentralised system. As a result of the five studies, this thesis develops a knowledge-driven framework to estimate and recognise multi-user activities at fine-grained level user actions. This framework integrates three complementary ontologies to conceptualise factual, fuzzy and uncertainties in the environment/ADLs, time-series analysis and discriminative sensing environment. Moreover, a distributed software architecture, multimodal sensor-based hardware prototypes, and other supportive utility tools such as simulator and synthetic ADL data generator for the experimentation were developed to support the evaluation of the proposed approaches. The distributed system is platform-independent and currently supported by an Android mobile application and web-browser based client interfaces for retrieving information such as live sensor events and HAR results

    Ask, and shall you receive?: Understanding Desire Fulfillment in Natural Language Text

    Full text link
    The ability to comprehend wishes or desires and their fulfillment is important to Natural Language Understanding. This paper introduces the task of identifying if a desire expressed by a subject in a given short piece of text was fulfilled. We propose various unstructured and structured models that capture fulfillment cues such as the subject's emotional state and actions. Our experiments with two different datasets demonstrate the importance of understanding the narrative and discourse structure to address this task

    Exploiting multimedia in creating and analysing multimedia Web archives

    No full text
    The data contained on the web and the social web are inherently multimedia and consist of a mixture of textual, visual and audio modalities. Community memories embodied on the web and social web contain a rich mixture of data from these modalities. In many ways, the web is the greatest resource ever created by human-kind. However, due to the dynamic and distributed nature of the web, its content changes, appears and disappears on a daily basis. Web archiving provides a way of capturing snapshots of (parts of) the web for preservation and future analysis. This paper provides an overview of techniques we have developed within the context of the EU funded ARCOMEM (ARchiving COmmunity MEMories) project to allow multimedia web content to be leveraged during the archival process and for post-archival analysis. Through a set of use cases, we explore several practical applications of multimedia analytics within the realm of web archiving, web archive analysis and multimedia data on the web in general

    Egocentric vision-based passive dietary intake monitoring

    Get PDF
    Egocentric (first-person) perception captures and reveals how people perceive their surroundings. This unique perceptual view enables passive and objective monitoring of human-centric activities and behaviours. In capturing egocentric visual data, wearable cameras are used. Recent advances in wearable technologies have enabled wearable cameras to be lightweight, accurate, and with long battery life, making long-term passive monitoring a promising solution for healthcare and human behaviour understanding. In addition, recent progress in deep learning has provided an opportunity to accelerate the development of passive methods to enable pervasive and accurate monitoring, as well as comprehensive modelling of human-centric behaviours. This thesis investigates and proposes innovative egocentric technologies for passive dietary intake monitoring and human behaviour analysis. Compared to conventional dietary assessment methods in nutritional epidemiology, such as 24-hour dietary recall (24HR) and food frequency questionnaires (FFQs), which heavily rely on subjectsā€™ memory to recall the dietary intake, and trained dietitians to collect, interpret, and analyse the dietary data, passive dietary intake monitoring can ease such burden and provide more accurate and objective assessment of dietary intake. Egocentric vision-based passive monitoring uses wearable cameras to continuously record human-centric activities with a close-up view. This passive way of monitoring does not require active participation from the subject, and records rich spatiotemporal details for fine-grained analysis. Based on egocentric vision and passive dietary intake monitoring, this thesis proposes: 1) a novel network structure called PAR-Net to achieve accurate food recognition by mining discriminative food regions. PAR-Net has been evaluated with food intake images captured by wearable cameras as well as those non-egocentric food images to validate its effectiveness for food recognition; 2) a deep learning-based solution for recognising consumed food items as well as counting the number of bites taken by the subjects from egocentric videos in an end-to-end manner; 3) in light of privacy concerns in egocentric data, this thesis also proposes a privacy-preserved solution for passive dietary intake monitoring, which uses image captioning techniques to summarise the image content and subsequently combines image captioning with 3D container reconstruction to report the actual food volume consumed. Furthermore, a novel framework that integrates food recognition, hand tracking and face recognition has also been developed to tackle the challenge of assessing individual dietary intake in food sharing scenarios with the use of a panoramic camera. Extensive experiments have been conducted. Tested with both laboratory (captured in London) and field study data (captured in Africa), the above proposed solutions have proven the feasibility and accuracy of using the egocentric camera technologies with deep learning methods for individual dietary assessment and human behaviour analysis.Open Acces
    • ā€¦
    corecore