5 research outputs found

    INDIVIDUAL DIFFERENCES IN BRAIN ACTIVITIES WHEN HUMAN WISHES TO LISTEN TO MUSIC CONTINUOUSLY USING NEAR-INFRARED SPECTROSCOPY

    Get PDF
    This paper introduces an individual difference in the activities of the prefrontal cortex when a person wants to listen to music using near-infrared spectroscopy. The individual differences are confirmed by visualizing the variation in oxygenated hemoglobin level. The sensing positions used to record the brain activities are around the prefrontal cortex. The existence of individual differences was verified by experiments. The experiment results show that active positions while feeling a wish to listen to music are different in each subject, and an oxygenated hemoglobin level is different in each subject compared to its value when a subject does not feel the wish to listen to music. The experiment results show that it is possible to detect a wish to listen to the music based on changes in the oxygenated hemoglobin level. Also, these results suggest that active positions are different in each subject because the sensitivities and how to feel on stimulus are different. Lastly, the results suggest that it is possible to express the individual differences as differences in active positions

    Classification of Tactile and Motor Velocity-Evoked Hemodynamic Response in Primary Somatosensory and Motor Cortices as Measured by Functional Near-Infrared Spectroscopy

    Get PDF
    Functional near-infrared spectroscopy (fNIRS) is an emerging technique in studying cerebral hemodynamics; however, consensus on the analysis methods and the clinical applications has yet to be established. In this study, we demonstrate the results of a pilot fNIRS study of cerebral hemodynamic response (HR) evoked by pneumotactile and sensorimotor stimuli on the dominant hand. Our goal is to find the optimal stimulus parameters to maximally evoke HR in the primary somatosensory and motor cortices. We use a pulsatile pneumatic array of 14 tactile cells that were attached to the glabrous surface of the dominant hand, with a patterned stimulus that resembles saltation at three distinct traverse velocities [10, 25, and 45 cm/s]. NIRS optodes (16 sources; 20 detectors) are bilaterally and symmetrically placed over the pre-and post-central gyri (M1 and S1). Our objective is to identify the extent to which cerebral HR can encode the velocity of the somatosensory and/or motor stimuli. We use common spatial pattern for feature extraction and regularized-discriminant analysis for classifying the fNIRS time series into velocity classes. The classification results demonstrate discriminatory features of the fNIRS signal from each distinct stimulus velocity. The results are inconclusive regarding the velocity which evokes the highest intensity of hemodynamic response

    Exploratory insights into prefrontal cortex activity in continuous glucose monitoring: findings from a portable wearable functional near-infrared spectroscopy system

    Get PDF
    The escalating global prevalence of diabetes highlights an urgent need for advancements in continuous glucose monitoring (CGM) technologies that are non-invasive, accurate, and user-friendly. Here, we introduce a groundbreaking portable wearable functional near-infrared spectroscopy (fNIRS) system designed to monitor glucose levels by assessing prefrontal cortex (PFC) activity. Our study delineates the development and application of this novel fNIRS system, emphasizing its potential to revolutionize diabetes management by providing a non-invasive, real-time monitoring solution. Fifteen healthy university students participated in a controlled study, where we monitored their PFC activity and blood glucose levels under fasting and glucose-loaded conditions. Our findings reveal a significant correlation between PFC activity, as measured by our fNIRS system, and blood glucose levels, suggesting the feasibility of fNIRS technology for CGM. The portable nature of our system overcomes the mobility limitations of traditional setups, enabling continuous, real-time monitoring in everyday settings. We identified 10 critical features related to blood glucose levels from extensive fNIRS data and successfully correlated PFC function with blood glucose levels by constructing predictive models. Results show a positive association between fNIRS data and blood glucose levels, with the PFC exhibiting a clear response to blood glucose. Furthermore, the improved regressive rule principal component analysis (PCA) method outperforms traditional PCA in model prediction. We propose a model validation approach based on leave-one-out cross-validation, demonstrating the unique advantages of K-nearest neighbor (KNN) models. Comparative analysis with existing CGM methods reveals that our paper’s KNN model exhibits lower RMSE and MARD at 0.11 and 8.96%, respectively, and the fNIRS data were highly significant positive correlation with actual blood glucose levels (r = 0.995, p < 0.000). This study provides valuable insights into the relationship between metabolic states and brain activity, laying the foundation for innovative CGM solutions. Our portable wearable fNIRS system represents a significant advancement in effective diabetes management, offering a promising alternative to current technologies and paving the way for future advancements in health monitoring and personalized medicine

    Discrimination of Mental Workload Levels From Multi-Channel fNIRS Using Deep Leaning-Based Approaches

    No full text

    Application of artificial intelligence in cognitive load analysis using functional near-infrared spectroscopy:A systematic review

    Get PDF
    Cognitive load theory suggests that overloading of working memory may negatively affect the performance of human in cognitively demanding tasks. Evaluation of cognitive load is a difficult task; it is often assessed through feedback and evaluation from experts. Cognitive load classification based on Functional Near-InfraRed Spectroscopy (fNIRS) is now one of the key research areas in recent years, due to its resistance of artefacts, cost-effectiveness, and portability. To make fNIRS more practical in various applications, it is necessary to develop robust algorithms that can automatically classify fNIRS signals and less reliant on trained signals. Many of the analytical tools used in cognitive sciences have used Deep Learning (DL) modalities to uncover relevant information for mental workload classification. This review investigates the research questions on the design and overall effectiveness of DL as well as its key characteristics. We have identified 45 studies published between 2011 and 2023, that specifically proposed Machine Learning (ML) models for classifying cognitive load using data obtained from fNIRS devices. Those studies were analyzed based on type of feature selection methods, input, and DL model architectures. Most of the existing cognitive load studies are based on ML algorithms, which follow signal filtration and hand-crafted features. It is observed that hybrid DL architectures that integrate convolution and LSTM operators performed significantly better in comparison with other models. However, DL models especially hybrid models have not been extensively investigated for the classification of cognitive load captured by fNIRS devices. The current trends and challenges are highlighted to provide directions for the development of DL models pertaining to fNIRS research
    corecore