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Abstract: Functional near-infrared spectroscopy (fNIRS) is an emerging technique in studying cerebral
hemodynamics; however, consensus on the analysis methods and the clinical applications has yet to be
established. In this study, we demonstrate the results of a pilot fNIRS study of cerebral hemodynamic
response (HR) evoked by pneumotactile and sensorimotor stimuli on the dominant hand. Our goal
is to find the optimal stimulus parameters to maximally evoke HR in the primary somatosensory
and motor cortices. We use a pulsatile pneumatic array of 14 tactile cells that were attached to
the glabrous surface of the dominant hand, with a patterned stimulus that resembles saltation at
three distinct traverse velocities [10, 25, and 45 cm/s]. NIRS optodes (16 sources; 20 detectors) are
bilaterally and symmetrically placed over the pre-and post-central gyri (M1 and S1). Our objective is
to identify the extent to which cerebral HR can encode the velocity of the somatosensory and/or motor
stimuli. We use common spatial pattern for feature extraction and regularized-discriminant analysis
for classifying the fNIRS time series into velocity classes. The classification results demonstrate
discriminatory features of the fNIRS signal from each distinct stimulus velocity. The results are
inconclusive regarding the velocity which evokes the highest intensity of hemodynamic response.

Keywords: fNIRS; somatosensory; motor; sensorimotor; pneumatic tactile stimulation; hemodynamic
response; stroke rehabilitation; neuroprotection; neurorehabilitation; regularized discriminant
analysis; common spatial pattern

1. Introduction

Understanding the quantifiable effects of peripheral somatosensory stimulation in the brain is
crucial, particularly in rehabilitative and therapeutic interventions designed to mitigate movement
disorders that are associated with cerebrovascular stroke, traumatic brain injury, and progressive
neuromotor brain diseases, which degrade locomotion, digital manipulation, speech, gesture,
and deglutition [1–3]. Numerous clinical studies have shown beneficial effects of somatosensory
stimulation in the treatment of movement disorders in subacute and chronic stroke patients [4–7];
however, the results are far from conclusive [8–10], as the improvements can be rather subjective or
extremely difficult to quantify. Another approach gaining traction in animal models involves the use
of sensorimotor interventions to promote blood circulation to the infarcted areas of the brain [11,12].
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The limitations or lack of neurotechnological tools and brain imaging techniques is an impeding
factor in the advancement of neurotherapeutics for sensorimotor impairments. Noninvasiveness,
ease of use, portability, accessibility, affordability, personalization of care, and robust data analytics
are all important factors when any potential imaging or therapeutic technique is being considered.
Near-Infrared Spectroscopy (NIRS) is an emerging example of a simple yet powerful tool that can be
used both as a neuroimaging modality for indirect monitoring of cortical blood oxygenation, or as a
therapeutic tool when employed in brain-computer interfaces or neurofeedback applications [13–16].

Since the early 1990s [17,18], functional near-infrared spectroscopy (fNIRS) has become an
increasingly appealing neuroimaging tool that is used by researchers to study the functional activation
of the human brain [19,20], particularly the cortical hemodynamic response (HR). The signals of interest
in human fNIRS are derived from the photon absorption rates of two Hemoglobin (Hb) chromophores
in the bloodstream, i.e., oxygenated-Hb (HbO) and deoxygenated-Hb (HbR). fNIRS is particularly
suitable for studying superficial layers (2–3 cm deep) of cortex in human adults, e.g., in somatosensory
and motor research, due to theoretical and practical constraints in imaging deeper layers of the adult
brain imposed by the photon path, scattering and absorption [21–24].

The human tactile somatosensory network is localized to the parietal and frontal cerebral
cortices and it shares reciprocal connectivity with tactile-velocity representations in the cerebellum
and thalamus [25]. Recent fMRI studies have demonstrated a best-velocity sensitivity to
saltatory pneumotactile stimuli traversing the hand [26] and face [27] ranging from 5 to 65 cm/s.
Thus, reproducible and quantitative stimulus delivery is crucial in sensorimotor rehabilitation, training,
and research. Additionally, noninvasiveness, versatility, and multimodal compatibility of the applicable
techniques are especially important. The pneumatic tactile stimulation array used in this study [26,28]
is compatible with all imaging modalities and it enables us to systematically deliver programmable
tactile stimuli in distinct patterns and salient velocities [29–31].

Methodological differences in the analysis of fNIRS data [32,33] can potentially lead to inconsistent
interpretations. Machine learning algorithms are being increasingly utilized for fNIRS analysis in order
to minimize such disparities and improve reproducibility [34–36]. The initial objective of this paper is
to validate the existence of any form of encoding of stimulus velocity in HR, and to ultimately design
stimulus protocols, e.g., for post-stroke sensorimotor rehabilitation of upper extremities, which would
maximally evoke HR in S1 and M1. As a first step toward this goal, we use an automated algorithm
based on regularized discriminant analysis (RDA) [37] for supervised classification of fNIRS time
series into their corresponding velocities based on time-domain features, where common spatial
pattern (CSP) [38] is used for feature extraction. Linear discriminant analyses are commonly used
in brain-computer interfaces (BCIs), when dealing with many feature vectors that are correlated,
e.g., in fNIRS, electroencephalography (EEG), or other high-dimensional datasets. RDA is particularly
useful, as it takes advantage of a tuning parameter that automatically determines the degree to which
the covariances should be pooled. Additionally, RDA works well with dimensionality reduction
algorithms, such as CSP, as they both use the same covariance matrix. Moreover, we showcase the
objectivity advantage of using automated algorithms in fNIRS analysis.

2. Materials and Methods

2.1. Participants

Eleven right-handed neurotypical adults (six males) between the ages of 19 and 35 years
(µ = 25.1 years, S.D. = 5.3) were recruited and enrolled in the study. The participants had no history
of neurological incidents or disorder. Prior to each experiment, the participants provided written
informed consent, and their hand and head dimensions were measured. This study was approved by
University of Nebraska Institutional Review Board (IRB# 20180218036EP).
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2.2. Experiment Design

We designed two experiments, including passive (somatosensory only) and active (motor plus
somatosensory), in order to investigate the most effective stimulation parameters in evoking HR.
Continuous wave fNIRS data was recorded at a sampling frequency of 7.8 Hz via a NIRX NIRScout™ [39]
system. Figure 1a shows the optode probe layout based on the standard 10–20 system which consists
of 16 dual-tip LED sources and 20 detectors that were configured over both hemispheres for a total
of 104 channels (52 HbO and 52 HbR links). The associated wavelengths with HbR and HbO in the
absorption spectra were 760 nm and 850 nm, respectively. The sources and detectors were bilaterally
placed over the primary somatosensory (S1, postcentral gyrus) and primary motor (M1, precentral
gyrus) cortices.
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Figure 1. Experiment Design: (a) fNIRS optode layout. Blue dots are light sources, red dots are
detectors and grey dots are five-percent distance increments in the standard 10–20 system. Each line
is a link (channel). (b) Galileo™ pneumotactile stimulus control system housed in a sound-isolated
room adjacent to the fNIRS recording suite to minimize its acoustic noise. (c) Color-coded TAC-cells
and the arrows show the order and direction of the saltation wave at each node. Each wave starts at
D2–D5 fingertips (red nodes) and terminates at the thumb (blue node). The time interval between two
consecutive nodes depends on the velocity and hand measurements. (d) Participant configured with
the fNIRS cap while receiving the somatosensory stimulus. (e) Stimulus pulse train color-coded to
match channel assignment. Each node delivers a 60 ms pulse. Each stimulus pulse train consists of
five 60 ms pulses at varying intervals based on the velocity and hand measurements. Each trial lasts
40 s, consisting of 20 s of stimulus in the form of repeated pneumatic pulse trains with 2 s interburst
intervals, followed by 20 s of no stimulation. There are 10 trials per velocity, resulting in 30 trials per
task. Each trial is immediately followed by another in a random-balanced velocity design.

For both passive and active experiments, the Galileo™ pneumatic tactile stimulator [40], shown in
Figure 1b, was programmed to deliver the different velocities of saltation on the glabrous skin of
the dominant hand propagated through an array consisting of 14 TAC-Cell nodes. The saltatory
wave consisted of pneumatic pulses (60 ms duration, 10 ms rise/fall) that were delivered directionally,
as shown by the arrows in Figure 1c, starting from four distal fingertip phalangeal nodes (D2–D5),
traversing over the corresponding four proximal phalangeal nodes, and terminating at the distal
phalynx of the thumb (D1). The velocity of the saltatory pneumotactile wave was presented in a
random-balanced design at 10, 25, and 45 cm/s. During the active task, the participants were instructed
to mimic the saltatory pattern immediately upon the detection of the pulsed stimuli at their D2–D5
fingertips, by flexing their fingers at a matching velocity, and remain still otherwise. During the passive
task, the participants were instructed to relax and remain still throughout the experiment.

The participants had 10 minutes of rest between the active and passive tasks. Every recording
session began with 60 s of rest, followed by 30 velocity trials (10 per velocity) each lasting 40 s, consisting
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of 20 s stimulus followed by 20 s of no stimulation, as illustrated in Figure 1e. The interval between
two consecutive saltatory waves was 2 s, while the internode intervals varied based on the velocity
and measured node distances. The number of saltatory waves across subjects was consistent; however,
it was different across velocities, e.g., up to three more stimulus trains could fit in a 20 s window for the
fastest velocity (45 cm/s) when compared to the slowest (10 cm/s). The disparity between the number
of stimulus trains across velocities was a concern in the experimental design, but we decided to impose
a consistent duration of stimulation, as opposed to a consistent number of pulses. The order of velocity
trials was randomized. The total duration of each experiment was 20 minutes plus an initial 60 s of
baseline recording for each participant.

2.3. Data Analysis

2.3.1. Preprocessing

NIRS brain AnalyzIR toolbox [41] was used for preprocessing of the fNIRS data. The following
modules of Version 615 with default settings were used for preprocessing the data:

• BaselineCorrection() for removing DC-shift and motion correction which detects statistical outliers
following an autoregressive integrative model fit of the data,

• OpticalDensity() for calculating − log raw
mean(raw)

, and

• BeerLambertLaw() for applying the modified Beer–Lambert law.

Before and after preprocessing, the time series were visually inspected to make sure no abundantly
noisy or abnormal segments are present in the data.

The input dataset to our algorithm were the estimated concentration changes of HbO and HbR
over time. The time series (52 channels × 2 wavelengths) were detrended and bandpass filtered
[0.01 Hz–0.18 Hz], in order to retain physiologically relevant components [42] of the fNIRS signal.

Following preprocessing, the fNIRS trials were split into stim-on and stim-off periods of 20-s
duration by using the timestamps of stimulus pulse train. For feature extraction, only the last 10 s of
stim-on, and the last 10 s of stim-off were considered. At the i-th trial, the data xi ∈ Rm×d from all
channels are windowed to 5-s blocks with 80% overlap, and then concatenated, such that m = nch × ns,
where nch and ns are number of channels and number of samples in each time window, respectively,
and d is total number of 5-s blocks within the i-th trial. When considering the 80% overlap, there are
six 5s blocks within each 10 s period of stim-on and stim-off, which adds up to d = 12 blocks per trial.
At 7.8 Hz sampling rate, there are ns = 39 samples per 5 s block per channel, adding up to 4056 samples
for the nch = 104 channels of HbO and HbR per velocity. These blocks are the high-dimensional inputs
to the CSP algorithm for dimensionality reduction.

2.3.2. Channel Selection

A binary classification on data that were collected from each channel has been applied to identify
the putative set of channels, including task-related concentration changes of HbO and HbR during the
stim-on period when compared to the stim-off period. Accordingly, we have computed the average of
each measurement block, i.e., summation of each block divided by its length, for both stim-on and
stim-off periods. We used RDA to discriminate between stim-on and stim-off conditions in order
to learn which channels attain the highest accuracy and area under the curve (AUC) in a binary
classification of two exemplary discriminable periods.

Before proceeding to dimensionality reduction and velocity classification task, we trimmed
the feature space by only selecting channels that meet the AUC > 60% criterion in discriminating
the stim-on and stim-off conditions, as illustrated in Figure 2. Table 1 shows the percentage of
channels per subject, which meet the 60% AUC threshold and remain in the feature space for velocity
classification. The average percentage of included channels are 47% and 77% for the passive and active
tasks, respectively.
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both HbO and HbR are fed to the RDA classifier. Channels with AUC > 0.6 where chosen for feature
extraction (a) Passive (somatosensory only) task. (b) Active (motor+somatosensory) task.

Table 1. Percentage of channels per subject remaining in the feature space by meeting the AUC > 0.6 threshold.

AK118 AM113 AR127 BH119 EB112 EC130 EP129 KB132 KR134 NG135 NP105

Passive 63.5% 26.9% 50.0% 80.8% 71.2% 23.1% 38.5% 55.8% 21.2% 44.2% 40.4%
Active 59.6% 86.5% 73.1% 73.1% 86.5% 94.2% 63.5% 73.1% 67.3% 88.5% 82.7%

2.3.3. Feature Extraction and Classification

Extracting features that provide the most information about the stimulus-related evoked HR
is one of the main challenges for the classification problem at different velocities. CSP is a widely
used method of feature extraction in multivariate biological signals [38], which has found application
in a diverse range of fields, particularly in motor imagery BCIs based on EEG [43] or fNIRS [44,45].
For binary classification, given a two-class dataset (e.g., stim-on vs. stim-off), CSP computes spatial
filters that maximize the ratio of the variance of the data of one class to the variance of the other and
projects the resultant data into a low-dimensional space via a linear transformation. A set of spatial
filters W∗ can be determined by solving the following optimization problem:

W∗ = arg max
w

{
WTΣ1W
WTΣ2W

}
(1)

where Σc is the covariance matrix corresponding to the class c. Given W∗, the filtered signal can be
presented as:

x̃i = W∗Txi (2)

Assuming that the spatial feature vectors captured by CSP follow a Gaussian distribution,
i.e., x̃i ∼ N(µ, Σ), and are independent and identically distributed (i.i.d.), we apply RDA for
classification of combined HbO and HbR time series to the provided velocity labels. K-fold cross
validation (K = 10) is used to learn the hyperparameters of the classifier, including shrinkage and
regularization parameters, and to maximize the AUC.
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3. Results

For binary classification, i.e., pairwise comparison between two velocities, we evaluated the
performance of the classifier in three cases: 10 vs. 25, 10 vs. 45, and 25 vs. 45 cm/s. As commonly
expected for bi-classifiers, and as shown in Figure 3a, they perform almost perfectly (Accuracy > 99%)
in both active and passive tasks. However, when given the task of distinguishing the correct velocity
out of the possible velocities, i.e., a tri-classifier with chance level at 33%, as shown in Figure 3b,
the average performance drops to 51.7% and 55.6% accuracy for passive and active tasks, respectively,
ranging from 40.6% accuracy at worst and 72.6% at best.
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Figure 3 demonstrates that the average performance of the classifiers greatly exceeds the chance
level. In Figure 4, the detailed classification performance of tri-classifiers is shown for each of the 11
participants, to confirm the consistency of this performance for every participant.
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We show in Figure 5 the performance of the tri-classifiers in both active and passive tasks for every
velocity and participant to further investigate the performance of the classifiers across participants
and tasks.
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Despite the consistent aggregated performance of the tri-classifiers above the chance level shown
in Figures 3b and 4, Figure 5 shows that, of the 33 individual classification tasks, five and nine instances
fail to perform above the chance level in active and passive experiments, respectively.

Figure 6 shows the confusion matrices for the classification performance.
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For the active experiment, the tri-classifier performs the best in detecting the highest velocity (64%
accuracy), and the worst for the lowest velocity (48% accuracy), as demonstrated in Figure 6.

For the passive experiment, the tri-classifier performs reliably well in detecting the middle velocity
of 25 cm/s with 73% accuracy, while only being marginally acceptable for the lowest and highest
velocities (41% and 42% accuracies, respectively).
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4. Discussion

In the present study, we used a somatosensory and motor stimulation paradigm in order to study
the dynamics of evoked cerebral HR, as measured by fNIRS, when the velocity of the somatosensory or
motor stimulus is the variable of interest. The primary aim was to identify the stimulus parameters that
evoke the maximum HR. Additionally, we trained and evaluated the performance of an RDA-based
classifier in discriminating the traverse velocity of the stimulus.

To the best of our knowledge, no machine learning algorithm has been previously used to
classify the fNIRS-based HR signal when the velocity of the stimulus is the variable of interest.
The most-comparable BCI-fNIRS studies involving three-class discrimination tend to consider inherently
more discriminable scenarios, e.g., rest vs. left-hand vs. right-hand motor execution [46], or mental
arithmetic vs. left-hand vs. right-hand motor imagery [47].

The average accuracies of tri-classifiers that are reported in [46,47] range roughly from 55% to 90%,
depending on the classification task, feature vectors, and the classification algorithms. In comparison,
our average accuracies of 51.7% and 55.6% for the passive and active task, respectively (as shown in
Figure 3b), for an inherently less discriminable task, demonstrates the potential of fNIRS in revealing
and exploiting subtle HR differences. The near-perfect performance (>99%) of two-class discrimination
of the stimulus, as illustrated in Figure 3a, makes fNIRS an ideal complementary modality in hybrid
BCI solutions, particularly given the ease-of-use and noninvasive nature of the technology.

The immediate next step in improving the classification performance, is the fine-tuning of the
classifier and the optimization of the feature vectors based on the specific task. Since the M1 and
S1 areas of the cortex are extremely responsive to any movement, additional improvements may be
achieved by motion-correction solutions and monitoring movement artifacts, e.g., by the inclusion of
electromyogram or accelerometer sensors. It is important to note that, even if the fNIRS acquisition
device is completely robust against movement artifacts, the elicited HR of such movements in the
cerebral cortex still remains, and can only be addressed if comprehensive auxiliary signals point
to undesirable movements. The evoked hemodynamic response in extracerebral tissues, e.g., skull
and scalp, is another conflicting measurement that is picked up by the NIRS machine. Therefore,
the inclusion of short-separation channels for regressing out the extracerebral HR can improve the
reliability and accuracy of such experiments. Furthermore, physiological monitoring with a minimal
array of EEG electrodes to monitor participant status (i.e., alert, drowsy, sleep) is advisable, as state
control can significantly affect cerebral process mechanisms, including HR and blood flow dynamics
during somatosensory encoding and motor control [48].

It is known [49] that voluntary sensorimotor tasks, i.e., the active paradigm (motor plus
somatosensory), can evoke a larger HR amplitude due to the activation of motor cortex and
movement-related afference which engages S1, as opposed to somatosensory-only tasks that typically
involve passive tactile stimulation of the extremities. Higher HR amplitude could potentially lead to
more discriminable feature vectors, which is a possible explanation behind the slightly higher average
accuracy (55.6% vs. 51.7%) in the active versus passive experiment. However, if discriminating the
stimulus velocities was the only goal, the inclusion of active paradigm may not be justifiable, as it may
bring complicating factors to the study, such as movement artifacts or how the participants vary in
performing the task, and negatively impact the reproducibility. Moreover, the applied hand flexion
force by participants during the active paradigm, and its likely variation across different velocity trials,
is a potentially a contributing factor in evoking HR [50,51]. Another confounding factor is the response
latency by the participants during the active task, which can also affect HR, further complicating the
interpretation of the results and a fair comparison against the passive task.

Perhaps by simplifying the experiment design through excluding the active paradigm, and by
including additional stimulus velocities instead, one can better identify the maximally discriminable
stimulus parameters and feature vectors. Although the average accuracy results that are presented in
this study demonstrate the feasibility of velocity discrimination in HR, as measured by fNIRS, the fact
that nine out of 33 classification accuracies in the passive task are below the chance level, as illustrated
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in Figure 5, emphasizes the need to curate stimulus parameters and feature vectors that improve the
reliability of the classifier.
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