2,847 research outputs found

    Weak Form of Stokes-Dirac Structures and Geometric Discretization of Port-Hamiltonian Systems

    Full text link
    We present the mixed Galerkin discretization of distributed parameter port-Hamiltonian systems. On the prototypical example of hyperbolic systems of two conservation laws in arbitrary spatial dimension, we derive the main contributions: (i) A weak formulation of the underlying geometric (Stokes-Dirac) structure with a segmented boundary according to the causality of the boundary ports. (ii) The geometric approximation of the Stokes-Dirac structure by a finite-dimensional Dirac structure is realized using a mixed Galerkin approach and power-preserving linear maps, which define minimal discrete power variables. (iii) With a consistent approximation of the Hamiltonian, we obtain finite-dimensional port-Hamiltonian state space models. By the degrees of freedom in the power-preserving maps, the resulting family of structure-preserving schemes allows for trade-offs between centered approximations and upwinding. We illustrate the method on the example of Whitney finite elements on a 2D simplicial triangulation and compare the eigenvalue approximation in 1D with a related approach.Comment: Copyright 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0

    Port-Hamiltonian discretization for open channel flows

    Get PDF
    A finite-dimensional Port-Hamiltonian formulation for the dynamics of smooth open channel flows is presented. A numerical scheme based on this formulation is developed for both the linear and nonlinear shallow water equations. The scheme is verified against exact solutions and has the advantage of conservation of mass and energy to the discrete level

    Port-Hamiltonian formulation of shallow water equations with Coriolis force and topography

    Get PDF
    We look into the problem of approximating the shallow water equations with Coriolis forces and topography. We model the system as an infinite-dimensional port-Hamiltonian system which is represented by a non-constant Stokes-Dirac structure. We here employ the idea of using different finite elements for the approximation of geometric variables (forms) describing a distributed parameter system, to spatially discretize the system and obtain a lumped parameter port-Hamiltonian system. The discretized model then captures the physical laws of its infinite-dimensional couterpart such as conservation of energy. We present some preliminary numerical results to justify our claims

    Explicit Simplicial Discretization of Distributed-Parameter Port-Hamiltonian Systems

    Get PDF
    Simplicial Dirac structures as finite analogues of the canonical Stokes-Dirac structure, capturing the topological laws of the system, are defined on simplicial manifolds in terms of primal and dual cochains related by the coboundary operators. These finite-dimensional Dirac structures offer a framework for the formulation of standard input-output finite-dimensional port-Hamiltonian systems that emulate the behavior of distributed-parameter port-Hamiltonian systems. This paper elaborates on the matrix representations of simplicial Dirac structures and the resulting port-Hamiltonian systems on simplicial manifolds. Employing these representations, we consider the existence of structural invariants and demonstrate how they pertain to the energy shaping of port-Hamiltonian systems on simplicial manifolds

    Energy preserving model order reduction of the nonlinear Schr\"odinger equation

    Get PDF
    An energy preserving reduced order model is developed for two dimensional nonlinear Schr\"odinger equation (NLSE) with plane wave solutions and with an external potential. The NLSE is discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of Hamiltonian ordinary differential equations are integrated in time by the energy preserving average vector field (AVF) method. The mass and energy preserving reduced order model (ROM) is constructed by proper orthogonal decomposition (POD) Galerkin projection. The nonlinearities are computed for the ROM efficiently by discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD). Preservation of the semi-discrete energy and mass are shown for the full order model (FOM) and for the ROM which ensures the long term stability of the solutions. Numerical simulations illustrate the preservation of the energy and mass in the reduced order model for the two dimensional NLSE with and without the external potential. The POD-DMD makes a remarkable improvement in computational speed-up over the POD-DEIM. Both methods approximate accurately the FOM, whereas POD-DEIM is more accurate than the POD-DMD

    Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws

    Get PDF
    International audienceA reduction method is presented for systems of conservation laws with boundary energy flow. It is stated as a generalized pseudo-spectral method which performs exact differentiation by using simultaneously several approximation spaces generated by polynomials bases and suitable choices of port-variables. The symplecticity of this spatial reduction method is proved when used for the reduction of both closed and open systems of conservation laws, for any choice of collocation points (i.e. for any polynomial bases). The symplecticity of some more usual collocation schemes is discussed and finally their accuracy on approximation of the spectrum, on the example of the ideal transmission line, is discussed in comparison with the suggested reduction scheme

    Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems

    Full text link
    Reduced basis methods are popular for approximately solving large and complex systems of differential equations. However, conventional reduced basis methods do not generally preserve conservation laws and symmetries of the full order model. Here, we present an approach for reduced model construction, that preserves the symplectic symmetry of dissipative Hamiltonian systems. The method constructs a closed reduced Hamiltonian system by coupling the full model with a canonical heat bath. This allows the reduced system to be integrated with a symplectic integrator, resulting in a correct dissipation of energy, preservation of the total energy and, ultimately, in the stability of the solution. Accuracy and stability of the method are illustrated through the numerical simulation of the dissipative wave equation and a port-Hamiltonian model of an electric circuit
    corecore