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a b s t r a c t

Simplicial Dirac structures as finite analogues of the canonical Stokes–Dirac structure, capturing the
topological laws of the system, are defined on simplicial manifolds in terms of primal and dual cochains
related by the coboundary operators. These finite-dimensional Dirac structures offer a framework for
the formulation of standard input–output finite-dimensional port-Hamiltonian systems that emulate
the behavior of distributed-parameter port-Hamiltonian systems. This paper elaborates on the matrix
representations of simplicial Dirac structures and the resulting port-Hamiltonian systems on simplicial
manifolds. Employing these representations, we consider the existence of structural invariants and
demonstrate how they pertain to the energy shaping of port-Hamiltonian systems on simplicial
manifolds.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Awide class of field theories can be treated as port-Hamiltonian
systems (Schöberl & Schlacher, 2011; van der Schaft & Maschke,
2002). The Stokes–Dirac structure defined by van der Schaft and
Maschke (2002) is an infinite-dimensional Dirac structure which
provides a theoretical account that permits the inclusion of vary-
ing boundary variables in the boundary problem for partial differ-
ential equations. From an interconnection and control viewpoint,
such a treatment of boundary conditions is essential for the incor-
poration of energy exchange through the boundary, since in many
applications the interconnectionwith the environment takes place
precisely through the boundary. For numerical integration, sim-
ulation and control synthesis, it is of paramount interest to have
finite-dimensional approximations that can be interconnected to
one another.

✩ The research reported in this paper was supported by the Netherlands
Organization for Scientific Research (NWO). The material in this paper was
partially presented at 7th Vienna International Conference on Mathematical
Modeling (MathMod 2012), February 15–17, 2012, Vienna, Austria. This paper was
recommended for publication in revised form by Associate Editor Nicolas Petit
under the direction of Editor Miroslav Krstic.

E-mail addresses:Marko.Seslija@gmail.com (M. Seslija), J.M.A.Scherpen@rug.nl
(J.M.A. Scherpen), A.J.van.der.Schaft@rug.nl (A. van der Schaft).
1 Tel.: +32 0 16 32 86 56; fax: +32 0 16 32 19 70.

Most of the numerical techniques emanating from the field
of numerical analysis, however, fail to capture the intrinsic sys-
tem structures and properties, such as symplecticity, conservation
of momenta and energy, as well as differential gauge symmetry.
Mixed finite element methods can be constructed in a such a man-
ner that a number of important structural properties are preserved
(Bossavit, 1998; Hiptmair, 2002; Hirani, 2003). Most of the efforts
have been focused on systems on manifolds without boundary or
zero energy flow through the boundary. In Golo, Talasila, van der
Schaft, and Maschke (2004) a mixed finite element scheme for
structure-preserving discretization of port-Hamiltonian systems
was proposed. The construction is clear in a one-dimensional spa-
tial domain, but becomes complicated for higher spatial domains.
Furthermore, the geometric content of the discretized variables re-
mains moot, in sense that, for instance, the boundary variables do
not genuinely live on the geometric boundary.

Recently in Seslija, van der Schaft, and Scherpen (2012), we
suggested a discrete exterior geometry approach to structure-
preserving discretization of distributed-parameter port-Hamilto-
nian systems. The spatial domain in the continuous theory
represented by a finite-dimensional smooth manifold is replaced
by a homological manifold-like simplicial complex and its cir-
cumcentric dual. The smooth differential forms, in discrete set-
ting, are mirrored by cochains on the primal and dual complexes,
while the discrete exterior derivative is defined to be the cobound-
ary operator. Discrete analogues of the Stokes–Dirac structure are
the so-called simplicial Dirac structures defined on spaces of pri-
mal and dual discrete differential forms. These finite-dimensional

0005-1098/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
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Dirac structures offer a natural framework for the formulation of
finite-dimensional port-Hamiltonian systems that emulate their
infinite-dimensional counterparts. The resulting port-Hamiltonian
systems are in the standard input–output form, unlike in Golo et al.
(2004), where the discretized models are acausal (given by a set
of differential and algebraic equations). The explicit input–output
form obtained by our scheme has the advantage from both numer-
ical and control perspective over the implicit model presented in
Golo et al. (2004).

In this paper, we address the issue of matrix representations
of simplicial Dirac structures by representing cochains by their
coefficient vectors. In this manner, all linear operator from the
continuous world can be represented by matrices, including the
Hodge star, the coboundary and the trace operator. Firstly, we
recall the definition of the Stokes–Dirac structure and port-
Hamiltonian systems. In the third section,wedefine some essential
concepts from discrete exterior calculus as developed by Desbrun,
Hirani, Leok, and Marsden (2002) and Hirani (2003). In order to
allow the inclusion of nonzero boundary conditions on the dual
cell complex, in Seslija et al. (2012) we have adapted a definition
of the dual boundary operator that leads to a discrete analogue
of the integration-by-parts formula, which is a crucial ingredient
in establishing simplicial Dirac structures on a primal simplicial
complex and its circumcentric dual. We demonstrate how these
simplicial Dirac structures relate to the spatially discretized wave
equation on a bounded domain and to the telegraph equations on a
segment. Towards the end of the paper, we consider the existence
of structural invariants, which are crucial for the control by energy
shaping.
Goal and contributions. This paper is written with several purposes
in mind.

• The essential theoretical results of this paper pertaining to
structure-preserving discretization, namely, Sections 3–5 have
been already reported in Seslija, Scherpen, and van der Schaft
(2011, 2012); Seslija et al. (2012) in an algebraic topology set-
ting. The results in this paper donot lean onto the heavynomen-
clature of algebraic topology, but instead emphasize matrix
representations, making it more accessible and easier to im-
plement. We demonstrate that a discrete differential modeling
approach to consistent discretization of distributed-parameter
systems is quite approachable—and, in fact, is often much sim-
pler than its continuous counterpart.
• We aim to render the theoretic foundation of our exposition ac-

cessible to control theorists, and the paper as such serves as a
segue to the rich literature on the subject.
• Another contribution of this paper is given in Sections 7 and

8. Here we address the existence of dynamical invariants for
the obtained spatially discrete systems and look at the energy-
Casimir method for energy shaping. We anticipate that this
line of research will lead to more elaborate and fruitful control
strategies for distributed systems.
• We hope that by the end of the paper it will become clear that

the discrete geometry-based approach to modeling is not only
tied to the discretization of infinite-dimensional systems, but,
instead, stands as a potent language for the system and control
community.

2. Background of port-Hamiltonian systems

Dirac structures were originally developed by Courant (1990)
andDorfman (1993) as a generalization of symplectic, presymplec-
tic and Poisson structures. Later, Dirac structures were employed
as the geometric formalism underpinning generalized intercon-
nected and constrained Hamiltonian systems (van der Schaft,
2000; van der Schaft & Maschke, 2002).

2.1. Dirac structures

LetX be amanifold and define a pairing on TX⊕T ∗X given by

⟨⟨(f1, e1), (f2, e2)⟩⟩ = ⟨e1|f2⟩ + ⟨e2|f1⟩.

For a subspace D of TX⊕ T ∗X, we define the orthogonal comple-
ment D⊥ as the space of all (f1, e1) such that ⟨⟨(f1, e1), (f2, e2)⟩⟩ =
0 for all (f2, e2). A Dirac structure is then a subbundle D of TX ⊕
T ∗X which satisfies D = D⊥.

The notion of Dirac structures is suitable for the formulation of
closed Hamiltonian systems, however, our aim is a treatment of
open Hamiltonian systems in such a way that some of the external
variables remain free port variables. For that reason, let Fb be a
linear vector space of external flows, with the dual space F ∗b of
external efforts. We deal with Dirac structures on the product
space X × Fb. The pairing on (TX × Fb) ⊕ (T ∗X × F ∗b ) is given
by

(f1, fb,1), (e1, eb,1)

,

(f2, fb,2), (e2, eb,2)


= ⟨e1|f2⟩ + ⟨eb,1|fb,2⟩ + ⟨e2|f1⟩ + ⟨eb,2|fb,1⟩. (1)

A generalized Dirac structure D is a subbundle of (TX × Fb) ⊕
(T ∗X× F ∗b ) which is maximally isotropic under (1).

Consider a generalized Dirac structure D on the product space
X × Fb. Let H : X → R be a Hamiltonian. The port-Hamiltonian
system corresponding to a 4-tuple (X, Fb, D,H) is defined by a
set of smooth time-functions {t → (x(t), fb(t), eb(t)) ∈ X×Fb×

F ∗b |t ∈ I ⊂ R} satisfying the equation

(−ẋ(t), fb(t), dH(x(t)), eb(t)) ∈ D for t ∈ I. (2)

The Eq. (2) implies the energy balance dH
dt (x(t)) = ⟨dH(x(t))|ẋ(t)⟩

= ⟨eb(t)|fb(t)⟩.
An important class of finite-dimensional port-Hamiltonian

systems is given by

ẋ = J(x)
∂H
∂x

(x)+ g(x)eb

fb = gt(x)
∂H
∂x

, (3)

where for clarity we have omitted the argument t , and J : T ∗X→
TX is a skew-symmetric vector bundle map and g : Fb → TX is
the independent input vector field.

In this work, we deal exclusively with Dirac structures on linear
spaces, which can be defined as follows. Let F and E be linear
spaces. Given an f ∈ F and an e ∈ E , the pairing will be denoted
by ⟨e|f ⟩ ∈ R. By symmetrizing the pairing, we obtain a symmetric
bilinear form ⟨⟨, ⟩⟩ : F × E → R naturally given as ⟨⟨(f1, e1),
(f2, e2)⟩⟩ = ⟨e1|f2⟩ + ⟨e2|f1⟩.

A constant Dirac structure is a linear subspace D ⊂ F × E such
that D = D⊥, with ⊥ standing for the orthogonal complement
with respect to the bilinear form ⟨⟨, ⟩⟩.

2.2. Stokes–Dirac structure

The Stokes–Dirac structure is an infinite-dimensional Dirac
structure that provides a foundation for the port-Hamiltonian for-
mulation of a class of distributed-parameter systems with bound-
ary energy flow (van der Schaft & Maschke, 2002).

Hereafter, letM be an oriented n-dimensional smoothmanifold
with a smooth (n − 1)-dimensional boundary ∂M endowed with
the induced orientation, representing the space of spatial variables.
Adhering to the familiar ground in this paper,M shall be a bounded
Euclidean domain. By Ωk(M), k = 0, 1, . . . , n, denote the space of
exterior k-forms on M , and by Ωk(∂M), k = 0, 1, . . . , n − 1, the
space of k-forms on ∂M .
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Fig. 1. A 3-dimensional example of primal and dual mesh elements. The corresponding circumcentric dual cells are shaded.

For any pair p, q of positive integers satisfying p + q = n + 1,
define the flow and effort linear spaces by

Fp,q = Ωp(M)×Ωq(M)×Ωn−p(∂M)

Ep,q = Ωn−p(M)×Ωn−q(M)×Ωn−q(∂M).

The bilinear form on the product space Fp,q × Ep,q is

⟨⟨(f 1p , f 1q , f 1b  
∈Fp,q

, e1p, e
1
q, e

1
b  

∈Ep,q

), (f 2p , f 2q , f 2b , e2p, e
2
q, e

2
b)⟩⟩

=


M
e1p ∧ f 2p + e1q ∧ f 2q + e2p ∧ f 1p + e2q ∧ f 1q

+


∂M

e1b ∧ f 2b + e2b ∧ f 1b . (4)

Theorem 1 (van der Schaft & Maschke, 2002). Given linear spaces
Fp,q and Ep,q, and the bilinear form ⟨⟨, ⟩⟩, define the following linear
subspace D of Fp,q × Ep,q

D =


(fp, fq, fb, ep, eq, eb) ∈ Fp,q × Ep,q|
fp
fq


=


0 (−1)pq+1d
d 0

 
ep
eq


,

fb
eb


=


tr 0
0 −(−1)n−qtr

 
ep
eq


, (5)

where d is the exterior derivative and tr stands for the trace operator
on the boundary ∂M. Then D = D⊥, that is, D is a Dirac structure.

Consider a Hamiltonian density H : Ωp(M) × Ωq(M) →
Ωn(M) resulting in the Hamiltonian H =


M H ∈ R. Setting the

flows fp = −
∂αp
∂t , fq = −

∂αq
∂t and the efforts ep = δpH , eq = δqH ,

where (δpH, δqH) ∈ Ωn−p(M) × Ωn−q(M) are the variational
derivatives ofH at (αp, αq), the distributed-parameter port-Hamilto-
nian system is defined by the relation
−

∂αp

∂t
,−

∂αq

∂t
, fb, δpH, δqH, eb


∈ D, t ∈ R. (6)

Since dH
dt =


∂M eb ∧ fb, the system is lossless.

3. Basics of discrete exterior calculus

In the discrete setting, the smoothmanifoldM is replaced by an
oriented manifold-like simplicial complex. An n-dimensional sim-
plicial manifold K is a simplicial triangulation of an n-dimensional
polytope |K | with an (n − 1)-dimensional boundary. Familiar
examples of such discrete manifolds are meshes of triangles em-
bedded in R3 and tetrahedra obtained by tetrahedrization of
3-dimensional manifolds.

3.1. Chains and cochains

The discrete analogue of a smooth k-form on the manifoldM is
a k-cochain on the simplicial complex K . A k-chain is a formal sum
of k-simplices of K such that its value on a simplex changes sign
when the simplex orientation is reversed. The free Abelian group
generated by a basis consisting of oriented k-simplices with real-
valued coefficients is Ck(K ;R). The space Ck(K ;R) is a vector space
with dimension equal to the number of k-simplices in K , which is
denoted by Nk. The space of k-cochains is the vector space dual of
Ck(K ;R) denoted by Ck(K ;R) or Ωk

d(K), as a reminder that this is
the space of discrete k-forms.

The discrete exterior derivative or the coboundary operator dk
:

Ωk
d(K)→ Ωk+1

d (K) is defined by duality to the boundary operator
∂k+1 : Ck+1(K ;Z)→ Ck(K ;Z), with respect to the natural pairing
between discrete forms and chains. For a discrete form α ∈ Ωk

d(K)

and a chain ck+1 ∈ Ck+1(K ;Z) we define dk by

⟨dkα, ck+1⟩ = ⟨α, (dk)tck+1⟩ = ⟨α, ∂k+1ck+1⟩, (7)

where the boundary operator ∂k+1 is the incidence matrix from
the space of (k + 1)-simplices to the space of k-simplices and is
represented by a sparse Nk+1 × Nk matrix containing only 0 or±1
elements (Desbrun, Kanso, & Tong, 2008). The important property
of the boundary operator is ∂k ◦ ∂k+1 = 0. The exterior derivative
also satisfies dk+1

◦ dk
= 0, which is a discrete analogue of the

vector calculus identities curl ◦ grad = 0 and div ◦ curl = 0.

Remark 1. The relation (7) can be regarded as a discrete Stokes’
theorem, where the role of the exterior derivative is being played by
the coboundary operator and the discrete analogue of integration
is the evaluation of a cochain.

3.2. Dual cell complex

An essential ingredient of discrete exterior calculus is the dual
complex of a manifold-like simplicial complex. The main idea is
to associate to each primal k-simplex a dual (n − k)-cell. For
example, in the 3-dimensional case, consider a tetrahedral mesh
with interior elements shown in Fig. 1. We associate a dual 3-cell
to each primal vertex (0-simplex), a dual polygon (2-cell) to each
primal edge (1-simplex), a dual edge (1-cell) to each primal face
(2-simplex), and a dual vertex (0-cell) to each primal tetrahedron
(3-simplex).

In the 2-dimensional case, for illustration consider the triangu-
lar mesh in Fig. 2. To the primal edge [vi, vj]we associate the dual
edge [v̂i, v̂j], where the vertices v̂i and v̂j are the circumcenters2 of
the two neighboring triangles that share the common edge [vi, vj].
The dual edge of [vi, vj] will be denoted by ⋆i[vi, vj]. The dual of
the vertex vr is its Voronoi region shown shaded. The dual of the
face [vm, vp, vn] is its circumcenter v̂r , while the dual of the edge
[vk, vl] is the (half-)edge [v̂k, v̂l] = ⋆i[vk, vl] orthogonal to [vk, vl]

and restricted to |K |.

2 The circumcenter of a k-simplexσ k is given by the center of the k-circumsphere,
which is the unique k-sphere that has all k+ 1 vertices of σ k on its surface.
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Fig. 2. A 2-dimensional simplicial complex K and its circumcentric dual cell
complex ⋆K indicated by dashed lines. The boundary of ⋆K is the dual of the
boundary of K .

The just explained geometric duality is the so-called circum-
centric or Voronoi duality,3 which has an important property that
primal and dual cells are orthogonal to each other. This feature dra-
matically simplifies the discrete counterpart of the Hodge star, as
will be shown in the next subsection. For this reason we shall be
dealing with the circumcentric duality and require that the simpli-
cial complex is well-centered (the circumcenters of all simplices of
all dimensions lie in the interior of the corresponding simplices).

Given a simplicial complex K , we define its interior dual cell
complex ⋆i K as the circumcentric dual ofK geometrically restricted
to |K |.

In a similar fashion, to each primal k-simplex living on the ge-
ometric boundary of K , hereafter denoted by ∂K , we can uniquely
associate an (n − 1 − k)-cell living on the dual of the boundary
∂K . The circumcentric dual of ∂K is the boundary dual cell complex
⋆b K . For example, considering Fig. 2, on the boundary, the dual of
the edge [vk, vl] is the dual vertex v̂k, while the boundary dual of
the primal vertex vk is the curvilinear edge ⋆b vk shown bolded.

The dual cell complex ⋆K is defined as ⋆K = ⋆i K × ⋆b K . The
dual mesh ⋆i K is a dual to K in sense of a graph dual, and the
dual of the boundary is equal to the boundary of the dual, that is
∂(⋆K) = ⋆(∂K) = ⋆b K . Because of duality, there is: (1) a one-to-
one correspondence between k-simplices of K and interior (n−k)-
cells of ⋆K ; (2) a bijection betweenprimal k-simplices of ∂K and the
dual boundary (n− 1− k)-cells of ⋆b K .

3.3. Exterior derivatives on the dual mesh

Everything that has been said about the primal discrete forms
carries over to the dual cochains, which can be interpreted as
covectors. The space of dual k-cochainswill be denoted asΩk

d(⋆i K).
The covectors will be labeled by a caret symbol, e.g., β̂ ∈ Ωk

d(⋆i K).
The trace operator trk : Ωk

d(K)→ Ωk
d(∂K) is a matrix that iso-

lates themembers of a k-cochain vector assumed on the geometric
boundary ∂K .

The dual exterior derivative dn−k
i : Ωn−k

d (⋆i K)→ Ωn−k+1
d (⋆i K)

is defined by duality to the primal exterior operator dk as

dn−k
i = (−1)k(dk−1)t.

The negative sign appears as the orientation of the dual is induced
by the primal orientation.

3 In algebraic topology (Munkres, 1984) and computational electromagnetics
(Bossavit, 1998; Hiptmair, 2002), another popular choice of the geometric dualism
is barycentric duality.

Fig. 3. The simplicial complex K consisting of two triangles. The dual edges
introduced by subdivision are shown dotted. The shaded area is the dual cell ⋆i v1
of the primal vertex v1 .

The dual boundary exterior derivative dn−k
b : Ωn−k

d (⋆b K) →

Ωn−k+1
d (⋆i K) is defined as

dn−k
b = (−1)k−1(trk−1)t.

Example 1. Consider a simplicial complex pictorially given by
Fig. 3. The primal and dual 2-faces have counterclockwise orienta-
tions. Thematrix representation of the incidence operator ∂1, from
the primal edges to the primal vertices, is

[v0, v1] [v1, v2] [v2, v0] [v1, v3] [v3, v2]

v0 −1 0 0 0 0
v1 1 −1 0 −1 0
v2 0 1 −1 0 1
v3 0 0 1 1 −1

while the discrete exterior derivative from the vertices to the edges
is the transpose of the incidence operator, i.e., d0

= ∂t
1 . The dual

exterior derivative is d1
i = −


d0
t, while the matrix representa-

tion of the d1
b operator is

v̂2, v̂1
 

v̂1, v̂3
 

v̂3, v̂4
 

v̂4, v̂2


⋆i v0 1 0 0 0
⋆i v1 0 1 0 0
⋆i v2 0 0 0 1
⋆i v3 0 0 1 0.

Here, as previously explained, ⋆i vj is the Voronoi dual of a vertex
vj, and


v̂2, v̂1


,

v̂1, v̂3


,

v̂3, v̂4


,

v̂4, v̂2


are the boundary duals

of v0, v1, v2, v3, respectively.
The trace operator is tr0 = (d1

b)
t.

The incidence operator ∂2, from the set of primal faces to the set
of the primal edges, is

[v0, v1, v2] [v1, v3, v2]
[v0, v1] 1 0
[v1, v2] 1 −1
[v2, v0] 1 0
[v1, v3] 0 1
[v3, v2] 0 1.

The d0
b operator is

v̂1 v̂2 v̂3 v̂4
v̂1, v̂0


−1 0 0 0

v̂5, v̂0


0 0 0 0
v̂2, v̂0


0 −1 0 0

v̂3, v̂5


0 0 −1 0
v̂4, v̂5


0 0 0 −1.

The trace operator that isolates the elements living on the bound-
ary edges is tr1 = −(d0

b)
t.
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3.4. Discrete wedge and Hodge operator

There exists a natural pairing, via the so-called primal–dual
wedge product, between a primal k-cochain and a dual (n − k)-
cochain. Let α ∈ Ωk

d(K) and β̂ ∈ Ωn−k
d (⋆i K). We define the dis-

crete primal–dual wedge product ∧ : Ωk
d(K)×Ωn−k

d (⋆i K)→ R by

⟨α ∧ β̂, K⟩ =

σ k
j ∈K

⟨α, σ k
j ⟩⟨β̂, ⋆i σ

k
j ⟩ = αtβ̂

= (−1)k(n−k)⟨β̂ ∧ α, K⟩,

where the summation is taken over all k-simplices σ k
j in K . Anal-

ogously, for an αb ∈ Ωk
d(∂K) and a β̂b ∈ Ωn−k−1

d (⋆b K), we define
the primal–dual pairing on the boundary by

⟨αb ∧ β̂b, ∂K⟩ = αt
bβ̂b = (−1)k(n−k−1)⟨β̂b ∧ αb, ∂K⟩.

Remark 2. Given a primal (k − 1)-form α and an internal dual
(n − k)-discrete form β̂i ∈ Ωn−k

d (⋆i K) and a dual boundary form
β̂b ∈ Ωn−k

d (⋆b K), then

⟨dk−1α ∧ β̂i, K⟩ + (−1)k−1⟨α ∧ (dn−k
i β̂i + dn−k

b β̂b), K⟩

= ⟨trk−1α ∧ β̂b, ∂K⟩.

The last relation is the summation-by-parts formula and its validity
is an immediate consequence of dn−k

i = (−1)k(dk−1)t and dn−k
b =

(−1)k−1(trk−1)t.

The support volumes of a simplex and its dual cell are the
same, which suggests that there is a natural identification between
primal k-cochains and dual (n − k)-cochains. In the exterior
calculus for smooth manifolds, the Hodge star, denoted ∗k, is an
isomorphism between the space of k-forms and (n−k)-forms. The
discrete Hodge star is a map ∗k : Ωk

d(K)→ Ωn−k
d (⋆i K) defined by

its value over simplices and their duals. In case of the circumcentric
duality, theHodge star∗k is a diagonalNk×Nk matrixwith the entry
corresponding to a simplex σ k being |σ k

|/| ⋆i σ
k
|, that is

∗k = diag


| ⋆i σ

k
1 |

|σ k
1 |

,
| ⋆i σ

k
2 |

|σ k
2 |

, . . . ,
| ⋆i σ

k
Nk
|

|σ k
Nk
|


.

Here, |σ k
| and | ⋆i σ

k
| are the volumes ofσ k and ⋆i σ

k, respectively.4

Example 2. Consider the 2-dimensional simplicial complex and its
circumcentric dual in Fig. 3. The diagonal Hodge operators are

∗0 = diag (| ⋆i v0|, | ⋆i v1|, | ⋆i v2|, | ⋆i v3|)

∗1 = diag

|[v̂1, v̂0]|

|[v0, v1]|
,
|[v̂0, v̂5]|

|[v1, v2]|
,
|[v̂2, v̂0]|

|[v2, v0]|
,
|[v̂3, v̂5]|

|[v1, v3]|
,
|[v̂4, v̂5]|

|[v3, v2]|


∗2 = diag


1

|[v0, v1, v2]|
,

1
|[v1, v3, v2]|


.

Remark 3. Another possibility for the construction of the Hodge
operator is to use Whitney forms. The Whitney map is an interpo-
lation scheme for cochains. It maps discrete forms to square in-
tegrable forms that are piecewise smooth on each simplex. The
Whitney maps are built from barycentric coordinate functions and
the resultingmatrix is sparse but in general not diagonal (Bossavit,
1998; Hiptmair, 2002).

4 The convention is that |σ 0
| = 1.

The linear operators of discrete exterior calculus used in this
paper are succinctly presented in the following diagram

Ω0
d (∂K) Ω0

d (K)
tr0

oo

d0

��

∗0 // Ωn
d (⋆iK)

∗
−1
0

oo Ωn−1
d (⋆bK)

dn−1boo

Ω1
d (∂K) Ω1

d (K)
tr1

oo

d1

��

∗1 //
Ωn−1

d (⋆iK)
∗
−1
1

oo

dn−1i

OO

Ωn−2
d (⋆bK)

dn−2boo

...
...

dn−2

��

...

dn−2i

OO

...

Ωn−1
d (∂K) Ωn−1

d (K)
trn−1

oo

dn−1

��

∗n−1 //
Ω1

d (⋆iK)
∗
−1
n−1

oo

d1i

OO

Ω0
d (⋆bK)

d0boo

Ωn
d (K)

∗n //
Ω0

d (⋆iK)
∗
−1
n

oo

d0i

OO

4. Simplicial Dirac structures

In this section, we develop the matrix representations of
simplicial Dirac structures. These structures are discrete analogues
of the Stokes–Dirac structure and as such are defined in terms of
primal and duals cochains on the underlying discrete manifold.

In the discrete setting, the role of the bounded domain M is
played by an n-dimensional well-centered oriented manifold-like
simplicial complex K . The flow and the effort spaces will be the
spaces of complementary primal and dual forms. The elements of
these two spaces are paired via the discrete primal–dual wedge
product. Let
F d

p,q = Ω
p
d (⋆i K)×Ω

q
d (K)×Ω

n−p
d (∂(K))

Ed
p,q = Ω

n−p
d (K)×Ω

n−q
d (⋆i K)×Ω

n−q
d (∂(⋆K)).

The primal–dual wedge product ensures a bijective relation
between the primal and dual forms, between the flows and efforts.
A natural discrete mirror of the bilinear form (4) is a symmetric
pairing on the product space F d

p,q × Ed
p,q defined by

⟨⟨(f̂ 1p , f 1q , f 1b  
∈F d

p,q

, e1p, ê
1
q, ê

1
b  

∈Ed
p,q

), (f̂ 2p , f 2q , f 2b , e2p, ê
2
q, ê

2
b)⟩⟩d

= ⟨e1p ∧ f̂ 2p + ê1q ∧ f 2q + e2p ∧ f̂ 1p + ê2q ∧ f 1q , K⟩

+ ⟨ê1b ∧ f 2b + ê2b ∧ f 1b , ∂K⟩. (8)
A discrete analogue of the Stokes–Dirac structure is the finite-
dimensional Dirac structure constructed in the following theorem.

Theorem 2. Given linear spaces F d
p,q and Ed

p,q, and the bilinear form
⟨⟨, ⟩⟩d. The linear subspace Dd ⊂ F d

p,q × Ed
p,q defined by

Dd =


(f̂p, fq, fb, ep, êq, êb) ∈ F d

p,q × Ed
p,q|

f̂p
fq


=


0 (−1)rdn−q

i
dn−p 0

 
ep
êq


+ (−1)r


dn−q
b
0


êb,

fb = (−1)ptrn−pep


, (9)

with r = pq+1, is a Dirac structurewith respect to the pairing ⟨⟨, ⟩⟩d.
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Proof. Note that since dn−q
i = (−1)q(dn−p)t and dn−q

b = (−1)n−p
(trn−p)t, the operator 0 (−1)rdn−q

i (−1)rdn−q
b

dn−p 0 0
(−1)ptrn−p 0


is skew-symmetric, and thus (9) is a Poisson structure on the state
space Ω

p
d (⋆i K)×Ω

q
d (K). �

The other discrete analogue of the Stokes–Dirac structure is
defined on the spaces
F̃ d

p,q = Ω
p
d (K)×Ω

q
d (⋆i K)×Ω

n−p
d (∂(⋆K))

Ẽd
p,q = Ω

n−p
d (⋆i K)×Ω

n−q
d (K)×Ω

n−q
d (∂K).

A natural discrete mirror of (4) in this case is a symmetric pairing
defined by

⟨⟨(f 1p , f̂ 1q , f̂ 1b  
∈F̃ d

p,q

, ê1p, e
1
q, e

1
b  

∈Ẽd
p,q

), (f 2p , f̂ 2q , f̂ 2b , ê2p, e
2
q, e

2
b)⟩⟩

d̃

= ⟨ê1p ∧ f 2p + e1q ∧ f̂ 2q + ê2p ∧ f 1p + e2q ∧ f̂ 1q , K⟩

+ ⟨e1b ∧ f̂ 2b + e2b ∧ f̂ 1b , ∂K⟩.

Theorem 3. The linear space D̃d defined by

D̃d =


(fp, f̂q, fb, ep, eq, eb) ∈ F̃ d

p,q × Ẽd
p,q|

fp
fq


=


0 (−1)pq+1dn−q

dn−p
i 0

 
êp
eq


+


0

dn−p
b


f̂b,

eb = (−1)ptrn−qeq


(10)

is a Dirac structure with respect to the bilinear pairing ⟨⟨, ⟩⟩d̃.
Proof. The simplicial Dirac structure (10) is the dual of (9), and the
proof is analogous to that of Theorem 2. �

In the following section, the simplicial Dirac structures (9) and
(10) will be used as terminus a quo for the geometric formulation
of spatially discrete port-Hamiltonian systems.

5. Port-Hamiltonian systems

Let a function H : Ω
p
d (⋆i K) × Ω

q
d (K) → R stand for the

Hamiltonian (α̂p, αq) → H(α̂p, αq), with α̂p ∈ Ω
p
d (⋆i K) and αq ∈

Ω
q
d (K). A time derivative of H along an arbitrary trajectory t →

(α̂p(t), αq(t)) ∈ Ω
p
d (⋆i K)×Ω

q
d (K), t ∈ R, is

d
dt

H(α̂p, αq) =


∂H

∂α̂p
∧

∂α̂p

∂t
+

ˆ∂H

∂αq
∧

∂αq

∂t
, K


, (11)

where the caret sign reminds that the quantity lives on the dual
mesh. The relations between the simplicial-Dirac structure (9) and
time derivatives of the variables are: f̂p = −

∂α̂p
∂t , fq = −

∂αq
∂t , while

the efforts are: ep = ∂H
∂α̂p

, êq = ˆ∂H
∂αq

.
This allows us to define a time-continuous port-Hamiltonian

system on a simplicial complex K (and its dual ⋆K ) by−∂α̂p

∂t

−
∂αq

∂t

 =  0 (−1)rdn−q
i

dn−p 0


∂H

∂α̂p
ˆ∂H

∂αq

+ (−1)r

dn−q
b
0


êb,

fb = (−1)ptrn−p
∂H

∂α̂p
, (12)

where r = pq+ 1.

The system (12) is evidently in the form (3). It immediately fol-
lows that d

dt H = ⟨êb∧fb, ∂K⟩, enunciating a fundamental property
of the system: the increase in the energy on the domain |K | is equal
to the power supplied to the system through the boundary ∂K and
∂(⋆K). The boundary efforts êb are the boundary control input and
fb are the outputs.

Remark 4. Introducing a linear negative feedback control as êb =
(−1)(n−p)(n−q)−1 ∗b fb, where ∗b is the Hodge star on the boundary
∂K , leads to passivization of the lossless port-Hamiltonian system,
i.e., d

dt H ≤ −⟨fb ∧ ∗b fb, ∂K⟩ ≤ 0. Furthermore, if the Hamiltonian
is a K∞ function with a strict minimum that is a stationary set for
the system (12), the equilibrium is asymptotically stable. A more
elaborate control strategy can be the energy shaping method as is
briefly discussed in Section 8.

An alternative formulation of a spatially discrete port-Hamilto-
nian system is given in terms of the simplicial Dirac structure (10).
We start with the Hamiltonian function (αp, α̂q) → H(αp, α̂q),
where αp ∈ Ω

p
d (K) and α̂q ∈ Ω

q
d (⋆i K). In a similar manner as

in deriving (12), we introduce the input–output port-Hamiltonian
system−

∂αp

∂t

−
∂α̂q

∂t

 =  0 (−1)rdn−q

dn−p
i 0


ˆ∂H

∂αp
∂H

∂α̂q

+  0
dn−p
b


f̂b,

eb = (−1)ptrn−q
∂H

∂α̂q
. (13)

In contrast to (12), in the case of the formulation (13), the
boundary flows f̂b can be considered to be freely chosen, while the
boundary efforts eb are determined by the dynamics. Note that the
free boundary variables are always defined on the boundary of the
dual cell complex.

6. Physical examples

In this section, we consider the discrete wave equation on a
2-dimensional simplicial complex and the telegraph equations on
a segment.

6.1. Two-dimensional wave equation

Consider the wave equation µ ∂2uc

∂t2
= −E∆uc , with uc(t, z) ∈

R, z = (z1, z2) ∈ M , where µ is the mass density, E is the Young’s
modulus, ∆ is the two-dimensional Laplace operator, and M is a
compact surface with a closed boundary. Throughout, the super-
script c designates the continuous quantities.

The energy variables are the 2-dimensional kinetic momentum
pc , and the 1-form elastic strain ϵc . The coenergy variables are the
0-form velocity vc and the 1-form stress σ c . The energy density
of the vibrating membrane is H(p, ϵ) = 1

2 (ϵc
∧ σ c
+ pc ∧ vc),

where the coenergy and energy variables are related by the
constitutive relations σ c

= E ∗ ϵc and vc
= 1/µ ∗ pc . The Hodge

operator here corresponds to the standard Euclidean metric onM .
The port-Hamiltonian formulation of the vibrating membrane in
full details is given in Golo et al. (2004).

Let us now consider the simplicial Dirac structure underpinning
the discretized two-dimensional wave equation. The energy
variables of the discretized system are chosen as follows: the
kinetic momentum is a dual 2-form whose time derivative is set
to be f̂p, the elastic strain is a primal 1-form with time derivative
corresponding to fq, the coenergy variables are a primal 0-form
ep and a dual 1-form êq. Such a formulation of the discrete wave
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Fig. 4. The primal 1-dimensional simplicial complex K . By construction, the nodes
v̂0 and v̂2n are added to the boundary to insure that ∂(⋆K) = ⋆(∂K).

equation is consonant with the simplicial Dirac structure (9) for
the case when p = n = 2 and q = 1, and is given by
f̂p
fq


=


0 −d1

i
d0 0

 
ep
êq


−


d1
b
0


êb, (14)

fb = tr0ep.
The boundary control variable is the 1-form stress êb, while the

output is the boundary velocity. The Hamiltonian of the discrete
model is

H =
1
2


ϵ ∧ E ∗1 ϵ + p̂ ∧

1
µ
∗
−1
0 p̂, K


.

The coenergy variables are the dual 1-form σ̂ = ∂H
∂ϵ
= E ∗1 ϵ and

the primal 0-form v = ∂H
∂ p̂ = ∗

−1
0 p̂.

The resulting port-Hamiltonian system is∂ p̂
∂t
∂ϵ

∂t

 =  0 d1
i

−d0 0

 1
µ
∗
−1
0 0

0 E ∗1

p̂
ϵ


+


d1
b
0


êb

fb =
1
µ
tr0 ∗−10 p̂,

where the operators d0, d1
i , tr

0
= (d1

b)
t, ∗1, and ∗−10 conform to the

diagram at the end of Section 3 when n = 2.

Example 3. For the Dirac structure (14) on the simplicial manifold
K given in Fig. 3, the operators d0, d1

i , tr
0
= (d1

b)
t are given in

Example 1. It is straightforward to show

⟨d0ep ∧ êq, K⟩ + ⟨ep ∧ (d1
i êq + d1

bêb), K⟩
= êb[v̂2, v̂1]fb(v0)+ êb[v̂1, v̂3]fb(v1)

+ êb[v̂3, v̂4]fb(v3)+ êb[v̂4, v̂2]fb(v2), (15)

what confirms that the boundary terms genuinely live on the
boundary of |K |.

6.2. Telegraph equations

We consider an ideal lossless transmission line on a 1-dimen-
sional simplicial complex given in Fig. 4. The energy variables are
the charge density q ∈ Ω1

d (K), and the flux density φ̂ ∈ Ω1
d (⋆K),

hence p = q = 1. The Hamiltonian representing the total energy
stored in the transmission line with distributed capacitance C and
distributed inductance L̂ is

H =


1
2C

q ∧ ∗1 q+
1

2L̂
φ̂ ∧ ∗−10 φ̂, K


, (16)

where ∗0 and ∗1 are the discrete diagonal Hodge operators
that relate the appropriate cochains according to the following
schematic diagram

Ω0
d (∂K)

tr0
←−− Ω0

d (K)
d0
−−→ Ω1

d (K)
↓∗b ↓∗0 ↓∗1

Ω0
d (∂(⋆K))

d0b
−−→ Ω1

d (⋆i K)
d0i
←−− Ω0

d (⋆i K) ,

where ⋆b is the identity.

The co-energy variables are: êp = ˆ∂H
∂q = ∗

q
C = V̂ representing

voltages and eq = ∂H

∂φ̂
= ∗

φ̂

L̂
= I currents. Selecting fp = −

∂q
∂t

and f̂q = −
∂φ̂

∂t leads to the port-Hamiltonian formulation of the
telegraph equations−

∂q
∂t

−
∂φ̂

∂t

 =  0 d0

d0
i 0

 ∗1
q
C

∗
−1
0

φ̂

L̂

+  0
d0
b


f̂b (17)

eb = −tr0 ∗−10
φ̂

L̂
,

where f̂b are the input voltages and eb are the output currents.
In the case we want to have the electrical currents as the

inputs, the charge and the flux densities would be defined on the
dual mesh and the primal mesh, respectively. Instead of the port-
Hamiltonian system in the form (17), the discretized telegraph
equations would be in the form (12). The charge density is defined
on the dual cell complex as q̂ ∈ Ω1

d (⋆i K) and the discrete flux
density is φ ∈ Ω1

d (K). The finite-dimensional port-Hamiltonian
system is of the form−∂ q̂

∂t

−
∂φ

∂t

 =  0 d0
i

d0 0

∗−10
q̂

Ĉ

∗1
φ

L

+ d0
b
0


êb (18)

fb = −tr0 ∗−10
q̂

Ĉ
,

where êb are the input currents and fb are the output voltages.
The exterior derivative d0

: Ω0
d (K) → Ω1

d (K) is the transpose
of the incidence matrix of the primal mesh. The discrete derivative
d0
i : Ω

0
d (⋆i K)→ Ω1

d (⋆i K) in the matrix notation is the incidence
matrix of the primal mesh. Thus, we have

−(d0
i )

t
= d0

=


−1 1 0 · · · 0 0
0 −1 1 · · · 0 0

. . .

0 0 0 · · · −1 1

 , (19)

tr0 = (d0
b)

t
=


−1 0 0 · · · 0 0
0 0 0 · · · 0 1


. (20)

Remark 5. The discrete analogue of the Stokes–Dirac structure ob-
tained in Golo et al. (2004) is a finite-dimensional Dirac structure,
but not a Poisson structure. The implication of this on the physical
realization is that, in contrast to our results, the transmission line
in the finite-dimensional case is not only composed of inductors
and capacitors but also of transformers.

The physical realizations of the port-Hamiltonian systems (17)
and (18) are given on Figs. 5 and 6, respectively. Stabilization of
either of those systems is easily achieved by terminating boundary
ports with resistive elements, what is a practical application of the
passivization explained in Remark 4.

Remark 6. The accuracy of the proposedmethod is 1/n (see Seslija
et al., 2012).

7. Conservation laws

Let us consider the existence of conservation laws and struc-
tural invariants for the port-Hamiltonian systems on simplicial
complexes.
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Fig. 5. The finite-dimensional approximation of the lossless transmission line
when the inputs are voltages and the outputs are currents. The inductances
L1, . . . , Ln+1 are the values that the discrete distributed inductance L̂ takes on the
simplices [v̂0, v̂1], . . . , [v̂2n−1, v̂2n]; the capacitances C1, . . . , Cn are the values C
takes on [v0, v2], . . . , [v2n−2, v2n].

Fig. 6. The finite-dimensional approximation of the lossless transmission line
when the inputs are currents and the outputs are voltages. The inductances are:
L1 =


[v0,v2]

Lc = L([v0, v2]), L2 =

[v2,v4]

Lc = L([v2, v4]), . . . , Ln =
[v2n−2,v2n]

Lc = L([v2n−2, v2n]); the values of capacitors are: C1 =

[v̂0,v̂1]

C c
=

Ĉ([v̂0, v̂1]), C2 =

[v̂1,v̂3]

C c
= Ĉ([v̂1, v̂3]), C3 =


[v̂3,v̂5]

C c
= Ĉ([v̂3, v̂5]),

. . . , Cn+1 =

[v̂2n−1,v̂2n]

C c
= Ĉ([v̂2n−1, v̂2n]).

7.1. Finite-dimensional invariants

The following proposition gives the conditions for the existence
of conservation laws in the discrete setting.

Proposition 4. Consider the port-Hamiltonian system (12). Let (α̂p,
αq) → C(α̂p, αq) be a real-valued function. Then

∂C
∂α̂p
∈ ker dn−p (21)

ˆ∂C
∂αq
∈ ker dn−q

i , (22)

iff C is a conservation law for the port-Hamiltonian system (12) sat-
isfying

dC
dt
=

f Cb
t

êb, (23)

where f Cb = −(−1)q(p+1)trn−p ∂C
∂α̂p

.

Proof. Differentiating C along the flow of the system (12), we have

dC
dt
=


∂C
∂α̂p
∧

∂α̂p

∂t
+

ˆ∂C
∂αq
∧

∂αq

∂t
, K



= (−1)pq
∂tC
∂α̂p


dn−q
i

ˆ∂H

∂αq
+ dn−q

b êb



− (−1)q(n−q)

dn−q ∂H

αq

t ˆ∂C
∂αq

= (−1)q(p+1)

dn−p ∂C

∂α̂p

t ˆ∂H

∂αq

− (−1)q(p+1)

trn−p

∂C
∂α̂p

t

êb

+ (−1)pq

dn−q
i

ˆ∂C
∂αq

t
∂H

∂α̂p
, (24)

wherewe have used the fact that dn−q
i = (−1)q(dn−p)t and dn−q

b =

(−1)n−p(trn−p)t. Furthermore, regardless of H , the result (23)
follows iff (21) and (22) hold. �

Remark 7. If either êb = 0 or f Cb = 0, the quantity C satisfying (21)
and (22) is a conserved quantity—a Casimir function.

7.2. One-dimensional domain

An interesting case for which it is possible explicitly to solve
(21) is when p = n. The matrix d0 is nothing but the transpose of
the incidence matrix ∂1, from the set of edges to the set of vertices,
on a connected graph. It is a well known property of any incidence
matrix ∂1 that ker ∂t

1 = span 1, where 1 stands for the vector with
all elements equal 1. A direct consequence of this is that ∂C

∂α̂p
= 1

up to a multiplicative constant.
In the one-dimensional case the null space of d0

i is trivial, cf.
(19), which allows us to explicitly express the conservation law.

Corollary 5. Consider the port-Hamiltonian system (12), with p =
q = n = 1, on a one-dimensional simplicial manifold given on Fig. 4.
The quantity Cp = 1tα̂p = α̂p([v̂0, v̂1])+

n−1
k=1 α̂p([v̂2k−1, v̂2k+1])+

α̂p([v̂2n−1, v̂2n]) satisfies the balance law

dCp

dt
= êb(v̂0)− êb(v̂2n). (25)

In case of the telegraph equations on the segment M = [0, 1],
the total charge C c

q =
 1
0 qc(t, z)dz as well as the total magnetic

flux C c
φ =

 1
0 φc(t, z)dz are both conservation laws. In the discrete

setting, the only conservation law for the system (18) is the total
charge Cq = 1tq̂whose derivative along the admissible trajectories
is dCq

dt = êb(v̂0)− êb(v̂2n). Similarly, the total flux Cφ = 1tφ̂ in the

system (17) satisfies the balance law dCφ

dt = f̂b(v̂0)− f̂b(v̂2n), where
f̂b(v̂0) and f̂b(v̂2n) are input currents. These result differ from those
presented in Macchelli (2011), where both the total flux and total
charge are conserved.

8. Energy-Casimir method

Consider the interconnection of (12) with the (possibly nonlin-
ear) integrator

dζ
dt
= gc uc (26)

yc = gt
c
∂Hc

∂ζ
, (27)

where ζ ∈ Rm, gc ∈ Rm×Nb with Nb = dimΩ
n−q
d (∂(⋆K)), input uc ,

output yc , and ζ → Hc(ζ ) the controller’s Hamiltonian. The inter-
connection is power-preserving with uc = fb and eb = −yc . The
composition is the port-Hamiltonian system in the form

∂α̂p

∂t
∂αq

∂t
dζ
dt

 =
 0 (−1)r−1dn−q

i (−1)rdn−q
b gt

c
dn−p 0 0

(−1)pgc trn−p 0




∂Hcl

∂α̂p

ˆ∂Hcl

∂αq
∂Hcl

∂ζ

 , (28)

with (α̂p, αq, ζ ) → Hcl(α̂p, αq, ζ ) is the closed-loop Hamiltonian
Hcl(α̂p, αq, ζ ) = H(α̂p, αq)+ Hc(ζ ).

The energy shaping for the system (28) is achievedby restricting
the behavior of (28) to a certain subspace (van der Schaft, 2000).
To this end, we look at the Casimir functions of the closed-loop
system.
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Proposition 6. The real-valued function (α̂p, αq, ζ ) → C(α̂p, αq, ζ )
is a Casimir function of the closed system (28) iff

∂C
∂α̂p
∈ ker dn−p

∩ ker

gc trn−p



ˆ∂C

∂αq
∂C
∂ζ

 ∈ ker

dn−q
i (−1)n−qdn−q

b gt
c


. (29)

Proof. Solving d
dt C(α̂p, αq, ζ ) = 0 irrespective ofHcl directly leads

to (29). �

Remark 8. Since the structural matrix of the port-Hamiltonian
system (12) is not of full rank in case when gc is identity, not all
Casimirs of (28) are of the form C(α̂q, αq, ζ ) = Si(α̂p, αq) − ζi,
i = 1, . . . ,m.

Remark 9. In case when p = q = m = n = 1 and gc = [1, 1], the
only Casimir for the system (28) is 1tαq + ζ .

9. Final remarks

The explicit simplicial discretization treated in this paper leads
to the standard input–output port-Hamiltonian systems without
algebraic constraints. The analysis and the control synthesis for
such systems belong to the realm of standard finite-dimensional
systems.

In the last section, we looked at a simple control strategy for the
energy shaping of discretized port-Hamiltonian systems. This at-
tempt has only scratched the surface of a very important problem.
Since the discretizedmodel assumes a port-Hamiltonian structure,
much more elaborate schemes for the control of port-Hamiltonian
systems can be applied. A nontrivial problem in this regard would
be to design a controller for the discretized model and then test it
on the continuousmodel and obtain the bounds of the discrepancy
norm between the two behaviors. Some initial work has already
been done in this vein, however, mostly pertaining to the sys-
tems on a one-dimensional spatial domain (see Macchelli, 2011;
Voss & Scherpen, 2011 and references quoted therein). In higher
dimensions, the interconnection of the finite controller and the
infinite-dimensional plantwould be naturally realized through the
interface of the simplicial triangulation of the boundary. Gauging
the input–output errors and energy shaping of the closed-loop sys-
tems are ideas we plan to explore in forthcoming publications.
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