5,497 research outputs found

    Machine Model Based Speed Estimation Schemes for Speed Encoderless Induction Motor Drives: a Survey

    Full text link
    Speed Estimation without speed sensors is a complex phenomenon and is overly dependent on the machine parameters. It is all the more significant during low speed or near zero speed operation. There are several approaches to speed estimation of an induction motor. Eventually, they can be classified into two types, namely, estimation based on the machine model and estimation based on magnetic saliency and air gap space harmonics. This paper, through a brief literature survey, attempts to give an overview of the fundamentals and the current trends in various machine model based speed estimation techniques which have occupied and continue to occupy a great amount of research space

    An experimental laboratory bench setup to study electric vehicle antilock braking / traction systems and their control

    Get PDF
    This paper describes the preliminary research and implementation of an experimental test bench set up for an electric vehicle antilock braking system (ABS)/traction control system (TCS) representing the dry, wet and icy road surfaces. A fuzzy logic based controller to control the wheel slip for electric vehicle antilock braking system is presented. The test facility comprised of an induction machine load operating in the generating region. The test facility was used to simulate a variety of tire/road μ-σ driving conditions, eliminating the initial requirement for skid-pan trials when developing algorithms. Simulation studies and results are provided

    Application of Fuzzy control algorithms for electric vehicle antilock braking/traction control systems

    Get PDF
    Abstract—The application of fuzzy-based control strategies has recently gained enormous recognition as an approach for the rapid development of effective controllers for nonlinear time-variant systems. This paper describes the preliminary research and implementation of a fuzzy logic based controller to control the wheel slip for electric vehicle antilock braking systems (ABSs). As the dynamics of the braking systems are highly nonlinear and time variant, fuzzy control offers potential as an important tool for development of robust traction control. Simulation studies are employed to derive an initial rule base that is then tested on an experimental test facility representing the dynamics of a braking system. The test facility is composed of an induction machine load operating in the generating region. It is shown that the torque-slip characteristics of an induction motor provides a convenient platform for simulating a variety of tire/road - driving conditions, negating the initial requirement for skid-pan trials when developing algorithms. The fuzzy membership functions were subsequently refined by analysis of the data acquired from the test facility while simulating operation at a high coefficient of friction. The robustness of the fuzzy-logic slip regulator is further tested by applying the resulting controller over a wide range of operating conditions. The results indicate that ABS/traction control may substantially improve longitudinal performance and offer significant potential for optimal control of driven wheels, especially under icy conditions where classical ABS/traction control schemes are constrained to operate very conservatively

    Machine model based Speed Estimation Schemes for Speed Encoderless Induction Motor Drives: A Survey

    Get PDF
    Speed Estimation without speed sensors is a complex phenomenon and is overly dependent on the machine parameters. It is all the more significant during low speed or near zero speed operation. There are several approaches to speed estimation of an induction motor. Eventually, they can be classified into two types, namely, estimation based on the machine model and estimation based on magnetic saliency and air gap space harmonics. This paper, through a brief literature survey, attempts to give an overview of the fundamentals and the current trends in various machine model based speed estimation techniques which have occupied and continue to occupy a great amount of research space

    Performance Analysis of DTC-SVM Sliding Mode Controllers-Based Parameters Estimator of Electric Motor Speed Drive

    Get PDF
    This paper is concerned with a framework which unifies direct torque control space vector modulation (DTC-SVM) and variable structure control (VSC). The result is a hybrid VSC-DTC-SVM controller design which eliminates several major limitations of the two individual controls and retains merits of both controllers. It has been shown that obtained control laws are very sensitive to variations of the stator resistance, the rotor resistance, and the mutual inductance. This paper discusses the performances of adaptive controllers of VSC-DTC-SVM monitored induction motor drive in a wide speed range and even in the presence of parameters uncertainties and mismatching disturbances. Better estimations of the stator resistance, the rotor resistance, and the mutual inductance yield improvements of induction motor performances using VSC-DTC-SVM, thereby facilitating torque ripple minimization. Simulation results verified the performances of the proposed approach

    Extended Kalman filter based sliding mode control of parallel-connected two five-phase PMSM drive system

    Get PDF
    This paper presents sliding mode control of sensor-less parallel-connected two five-phase permanent magnet synchronous machines (PMSMs) fed by a single five-leg inverter. For both machines, the rotor speeds and rotor positions as well as load torques are estimated by using Extended Kalman Filter (EKF) scheme. Fully decoupled control of both machines is possible via an appropriate phase transposition while connecting the stator windings parallel and employing proposed speed sensor-less method. In the resulting parallel-connected two-machine drive, the independent control of each machine in the group is achieved by controlling the stator currents and speed of each machine under vector control consideration. The effectiveness of the proposed Extended Kalman Filter in conjunction with the sliding mode control is confirmed through application of different load torques for wide speed range operation. Comparison between sliding mode control and PI control of the proposed two-motor drive is provided. The speed response shows a short rise time, an overshoot during reverse operation and settling times is 0.075 s when PI control is used. The speed response obtained by SMC is without overshoot and follows its reference and settling time is 0.028 s. Simulation results confirm that, in transient periods, sliding mode controller remarkably outperforms its counterpart PI controller. 2018 by the authors.Scopu

    Discrete-Time sliding mode with time delay estimation of a six-phase induction motor drive

    Get PDF
    This paper investigates the problem of stator current control in presence of uncertainties and unmeasurable rotor current for a six-phase induction motor drive. An inner control loop based on a robust discrete-time sliding mode with time delay estimation method is proposed to ensure the finite-time convergence of the stator currents to their desired references while the proportional-integral controller is used for the outer speed control. Sufficient conditions are established to ensure the stability of the closed-loop system. Simulation results were carried out to verify the performance of the proposed robust control strategy for a six-phase induction motor drive.CONACYT – Consejo Nacional de Ciencia y TecnologíaPROCIENCI

    Extended Kalman filter based sliding mode control of parallel-connected two five-phase PMSM drive system

    Get PDF
    This paper presents sliding mode control of sensor-less parallel-connected two five-phase permanent magnet synchronous machines (PMSMs) fed by a single five-leg inverter. For both machines, the rotor speeds and rotor positions as well as load torques are estimated by using Extended Kalman Filter (EKF) scheme. Fully decoupled control of both machines is possible via an appropriate phase transposition while connecting the stator windings parallel and employing proposed speed sensor-less method. In the resulting parallel-connected two-machine drive, the independent control of each machine in the group is achieved by controlling the stator currents and speed of each machine under vector control consideration. The effectiveness of the proposed Extended Kalman Filter in conjunction with the sliding mode control is confirmed through application of different load torques for wide speed range operation. Comparison between sliding mode control and PI control of the proposed two-motor drive is provided. The speed response shows a short rise time, an overshoot during reverse operation and settling times is 0.075 s when PI control is used. The speed response obtained by SMC is without overshoot and follows its reference and settling time is 0.028 s. Simulation results confirm that, in transient periods, sliding mode controller remarkably outperforms its counterpart PI controller

    Sliding Mode Speed and Position Control of Induction Motor Drive in Cascade Connection

    Get PDF
    This chapter deals with sliding mode application in control of an induction motor (IM) torque, speed, and position. Classical, direct approaches to control mentioned variables are described. Their drawbacks are presented and analyzed. Direct control structures are then compared with the proposed cascade sliding mode control structures. These structures allow to control all of the IM variables effectively, simultaneously ensuring supervision of all remaining variables. All of the analyzed structures are illustrated with block diagrams, as well as with simulation and experimental test results
    corecore