32,299 research outputs found

    Discrete Elastic Inner Vector Spaces with Application in Time Series and Sequence Mining

    Get PDF
    This paper proposes a framework dedicated to the construction of what we call discrete elastic inner product allowing one to embed sets of non-uniformly sampled multivariate time series or sequences of varying lengths into inner product space structures. This framework is based on a recursive definition that covers the case of multiple embedded time elastic dimensions. We prove that such inner products exist in our general framework and show how a simple instance of this inner product class operates on some prospective applications, while generalizing the Euclidean inner product. Classification experimentations on time series and symbolic sequences datasets demonstrate the benefits that we can expect by embedding time series or sequences into elastic inner spaces rather than into classical Euclidean spaces. These experiments show good accuracy when compared to the euclidean distance or even dynamic programming algorithms while maintaining a linear algorithmic complexity at exploitation stage, although a quadratic indexing phase beforehand is required.Comment: arXiv admin note: substantial text overlap with arXiv:1101.431

    Kinetic Solvers with Adaptive Mesh in Phase Space

    Full text link
    An Adaptive Mesh in Phase Space (AMPS) methodology has been developed for solving multi-dimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a tree of trees data structure. The mesh in r-space is automatically generated around embedded boundaries and dynamically adapted to local solution properties. The mesh in v-space is created on-the-fly for each cell in r-space. Mappings between neighboring v-space trees implemented for the advection operator in configuration space. We have developed new algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive mesh in velocity space: importance sampling, multi-point projection method, and the variance reduction method. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions in a Lorentz gas. New AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce computational cost and memory usage for solving challenging kinetic problems

    A discrete framework to find the optimal matching between manifold-valued curves

    Full text link
    The aim of this paper is to find an optimal matching between manifold-valued curves, and thereby adequately compare their shapes, seen as equivalent classes with respect to the action of reparameterization. Using a canonical decomposition of a path in a principal bundle, we introduce a simple algorithm that finds an optimal matching between two curves by computing the geodesic of the infinite-dimensional manifold of curves that is at all time horizontal to the fibers of the shape bundle. We focus on the elastic metric studied in the so-called square root velocity framework. The quotient structure of the shape bundle is examined, and in particular horizontality with respect to the fibers. These results are more generally given for any elastic metric. We then introduce a comprehensive discrete framework which correctly approximates the smooth setting when the base manifold has constant sectional curvature. It is itself a Riemannian structure on the product manifold of "discrete curves" given by a finite number of points, and we show its convergence to the continuous model as the size of the discretization goes to infinity. Illustrations of optimal matching between discrete curves are given in the hyperbolic plane, the plane and the sphere, for synthetic and real data, and comparison with dynamic programming is established

    Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top

    Full text link
    We develop the theory of discrete time Lagrangian mechanics on Lie groups, originated in the work of Veselov and Moser, and the theory of Lagrangian reduction in the discrete time setting. The results thus obtained are applied to the investigation of an integrable time discretization of a famous integrable system of classical mechanics, -- the Lagrange top. We recall the derivation of the Euler--Poinsot equations of motion both in the frame moving with the body and in the rest frame (the latter ones being less widely known). We find a discrete time Lagrange function turning into the known continuous time Lagrangian in the continuous limit, and elaborate both descriptions of the resulting discrete time system, namely in the body frame and in the rest frame. This system naturally inherits Poisson properties of the continuous time system, the integrals of motion being deformed. The discrete time Lax representations are also found. Kirchhoff's kinetic analogy between elastic curves and motions of the Lagrange top is also generalised to the discrete context.Comment: LaTeX 2e, 44 pages, 1 figur
    • …
    corecore