71,222 research outputs found

    A Bound for the Eigenvalue Counting Function for Higher-Order Krein Laplacians on Open Sets

    Full text link
    For an arbitrary nonempty, open set Ω⊂Rn\Omega \subset \mathbb{R}^n, n∈Nn \in \mathbb{N}, of finite (Euclidean) volume, we consider the minimally defined higher-order Laplacian (−Δ)m∣C0∞(Ω)(- \Delta)^m\big|_{C_0^{\infty}(\Omega)}, m∈Nm \in \mathbb{N}, and its Krein--von Neumann extension AK,Ω,mA_{K,\Omega,m} in L2(Ω)L^2(\Omega). With N(λ,AK,Ω,m)N(\lambda,A_{K,\Omega,m}), λ>0\lambda > 0, denoting the eigenvalue counting function corresponding to the strictly positive eigenvalues of AK,Ω,mA_{K,\Omega,m}, we derive the bound N(λ,AK,Ω,m)≤(2π)−nvn∣Ω∣{1+[2m/(2m+n)]}n/(2m)λn/(2m),λ>0, N(\lambda,A_{K,\Omega,m}) \leq (2 \pi)^{-n} v_n |\Omega| \{1 + [2m/(2m+n)]\}^{n/(2m)} \lambda^{n/(2m)}, \quad \lambda > 0, where vn:=πn/2/Γ((n+2)/2)v_n := \pi^{n/2}/\Gamma((n+2)/2) denotes the (Euclidean) volume of the unit ball in Rn\mathbb{R}^n. The proof relies on variational considerations and exploits the fundamental link between the Krein--von Neumann extension and an underlying (abstract) buckling problem.Comment: 22 pages. Considerable improvements mad

    Understanding linear measure

    Full text link
    This article provides strategies for enhancing tasks to offer students better opportunities to develop conceptual understanding of length measurement. Teachers are offered strategies that help move instruction beyond procedures
    • …
    corecore