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Abstract

The constellations of lattice points are important in information theory. We study constellations of
lattice points forming parallelograms in the seven dimensional integer lattice Z7 . The distribution
of the parallelogram perimeters displays frequencies with a value f = 1 that indicates the existence
of unique constellations. We discover that the unique constellations are embedded in specific hy-
perplanes of the integer lattice Z7 . We find that the measure polytopes P s7 with edge length 2s ,
where s = `∞ is the Chebyshev norm, are the framework for the classification of the parallelogram
perimeter distributions. We demonstrate that the mathematical structure S classifying the distri-
butions is based on leader classes which are distinct constellations of integer lattice points, that
are related through a signed permutation of the integer lattice point coordinates. The appendices
contain a preliminary classification of the distributions based on the measure polytope P 10

7 and
also numerical data useful as starting point for the further exploration of the integer lattice point
constellations.
Keywords: centrally symmetric polytope, lattice polytope, isoperimeter, 7-dimensional integer
lattice
2010 MSC: 52B12, 52B20, 52B60, 52C07

1. Introduction

We use as mathematical framework a 7-dimensional integer lattice Z7 .

1.1. Outline of the paper
1.2. Preliminaries

Let the set of integer septuples Z7 .= {(X1, . . . , X7) | Xi ∈ Z} be called the 7-dimensional
integer lattice. A set of lattice points is called a lattice constellation [25]. The Ais are the con-
travariant components of the lattice point ă . The Abelian group Z7 [26] is a Z-module. The family
{Z,Z2,Z3,Z4,Z5,Z6} are Z-submodules of Z7. The Z-module Z7/Z is called the quotient module
of Z7 with respect to Z. The prerequisite for the creation of a vector space is the existence of a field
F for the scalars. The elements of the vector space are then vectors. This justifies the notation ă ,
indicating that the elements of Z7,+, · are not vectors a . We select 7 linearly independent lattice
points ĕ1, . . . , ĕ7 of Z7 . The ĕis form a covariant basis [27] for the integer lattice in Z7 . Every lattice
point is expressed in a unique way as the linear combination: x̆ = X1ĕ1 + . . . + X7ĕ7 where the
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coefficients Xi are called the contravariant components of x̆ . The inner product is defined as the

expression: x̆ · y̆ =
7∑
i=1

7∑
j=1

aijX
iY j where aij = aji . Consider seven lattice points ĕi satisfying the

expression ĕi =
7∑
k=1

aikĕk . This contravariant basis spans the space Z7 resulting in the equations
7∑
i=1

aij ĕ
i =

7∑
i=1

7∑
k=1

aija
ikĕk =

7∑
k=1

δkj ĕk = ĕj . A lattice point x̆ has covariant components Xi, such

that x̆ =
7∑
i=1

Xiĕ
i . These components are related to the contravariant components by the expres-

sions: Xj =
7∑
i=1

aijXi and Xi =
7∑
i=1

aijX
j . With this notation the inner product is represented as

x̆ · y̆ =
7∑
i=1

XiYi =
7∑
k=1

XkY
k . Observe that, since ĕi · ĕj =

7∑
i=1

aikĕk · ĕj =
7∑
i=1

aikajk = δij , each

ĕi is orthogonal to every ĕj except ĕi . We obtain that ĕi · ĕj = 1 . We are free to select seven
basis lattice points. We define: l̆ .= ĕ1 = (1, 0, 0, 0, 0, 0, 0) , m̆ .= ĕ2 = (0, 1, 0, 0, 0, 0, 0) , t̆ .= ĕ3 =
(0, 0, 1, 0, 0, 0, 0) , ĭ .= ĕ4 = (0, 0, 0, 1, 0, 0, 0) , T̆ .= ĕ5 = (0, 0, 0, 0, 1, 0, 0) , n̆ .= ĕ6 = (0, 0, 0, 0, 0, 1, 0) ,
L̆
.= ĕ7 = (0, 0, 0, 0, 0, 0, 1) , with ĕi ∈ Z7 . This basis generates a cubic lattice [29] that is orthonor-

mal. We call the expression N(x̆) .= ‖x̆‖1 =
7∑
i=1

7∑
k=1

aikX
iXk , the `1-norm of x̆ in Z7 . We call

the expression ‖x̆‖2
.=

√
7∑
i=1

7∑
k=1

aikXiXk the `2-norm or Euclidean norm of x̆ in Z7 . We call the

expression ‖x̆‖∞ = max{|X1|, . . . , |X7|} the Chebyshev norm or infinity norm of x̆ in Z7 . Let
x̆, y̆ be lattice points of Z7 . The `2-distance (Euclidean distance) between the points x̆, y̆ is de-

fined by: d(x̆, y̆) = ‖x̆ − y̆‖2 =

√
7∑
i=1

(Xi − Yi)(Xi − Y i) where x̆ − y̆ = (X1 − Y 1, . . . , X7 − Y 7)

if x̆ = (X1, . . . , X7) and y̆ = (Y 1, . . . , Y 7) . We call two integer lattice points neighbours if their
`2-distance is 1. We assign to each lattice point x̆ of Z7 a hyperplane Hx̆ . A set Hx̆ in Z7 is a
hyperplane [30] if and only if there exist scalars C0, C1, . . . , C7, where not all C1, . . . , C7 are zero,
such that Hx̆ = {(X1, . . . , X7) | C0 + C1X

1 + . . . + C7X
7 = 0} . Consider now the lattice point

y̆ = (Y 1, . . . , Y 7) and select its associated hyperplane Hy̆ that contains the lattice point ŏ . The

lattice point x̆ is incident on the hyperplane Hy̆ when it satisfies the equation
7∑
i=1

Y iXi = 0 . The

distance between the lattice point z̆ and the hyperplane Hy̆, measured along the perpendicular, is

the projection of ŏz̆ in the direction of ŏy̆ that is given by the equation z̆ · y̆
‖y̆‖2

=

7∑
i=1

ZiY
i√

7∑
i=1

YiY i

. Let

the lattice point x̆′ be the image of x̆ by reflection in the hyperplane Hy̆ . Consider the lattice
point z̆ satisfying z̆ = x̆ − x̆′, then the line ŏz̆ is parallel to the line ŏy̆ . We define now a general
reflection [27] in the hyperplane Hy̆ as x̆− x̆′ = 2 x̆ · y̆

y̆ · y̆
y̆ . We call the lattice point y̆ the root [31] of

the reflecting hyperplane Hy̆ . The root system for the Lie algebra B7 [32] has the basis ᾰ1, . . . , ᾰ7
defined by ᾰ1 = ĕ1 − ĕ2, ᾰ2 = ĕ2 − ĕ3, . . . , ᾰ6 = ĕ6 − ĕ7, ᾰ7 = ĕ7 . This root system generates

2



the Z7 integer lattice as root lattice [31] by reflections in the hyperplanes associated with the roots.
The reflections are characterized by signed permutation matrices [32]. As we will connect points in
the integer lattice, we use the term path from graph theory [33], where a k-path is a simple graph
of length k, i.e., consisting of k vertices and k edges and represented by a sequence of consecutive
vertices x̆0 . . . x̆k−1 [33]. The Euclidean dimension of a graph G is the smallest integer p such that
the vertices of G can be represented by points in the Euclidean space Zp with two points being 1
unit distance apart if and only if they represent adjacent vertices [34]. For undefined terms from
graph theory see [33].

Definition 1. Let the surjective function “psc”, represent the parity of the sum of coordinates of
a lattice point of Z7 and define:

psc : Z7 → {0, 1} | psc (x̆) = |
7∑

i=1
X i | (mod 2 ) ,X i ∈ Z .

The “psc” function is a 2-colouring function. We have an evensum lattice point when psc (x̆) = 0
and an oddsum lattice point when psc (x̆) = 1 where x̆ ∈ Z7 . Observe that the lattice points
x̆ for which psc (x̆) = 0 are elements of D7 that is an indecomposable root lattice [35] defined

as D7 = {(X1, . . . , X7) ∈ Z7 |
7∑
i=1

Xi is even} . The lattice D7 has 84 minimal points, that

are ±ĕj ± ĕk where (1 ≤ j < k ≤ 7) . These 84 points form a simple basis derived from the
canonical basis ĕ1, . . . , ĕ7 of Z7 . Consider a lattice point x̆0 and points x̆ , which have the property
x̆0 + x̆ ∈ A⇔ x̆0 − x̆ ∈ A then we call A a centrally symmetric set. In the remainder of the article
we will assume that x̆0 = ŏ is the origin of Z7 . An integer lattice polytope is the convex hull of a
set of finitely many points in Zd . A measure polytope P sd of edge-length 2s is a subset of Zd with
the following property P sd = {x̆(X1, . . . , Xd) ∈ Zd | ‖x̆‖∞ = s} , where Xi ∈ Z and (1 ≤ i ≤ d) .

2. Parallelogram as constellation of lattice points

The 4-cycle ŏy̆z̆x̆ŏ is equal to circuit(ŏy̆z̆x̆ŏ) where the constellation oyzxo describes a hamil-
tonian circuit. Let the parallelogram oyzxo represent a directed graph on the vertices 1, . . . , 4 and
let the variable ui denote the vertex that follows vertex i in the sequence. The set of values that
ui can take is the set of integers j for which (i, j) is an edge of the parallelogram oyzxo. The
constraint circuit(u1, u2, u3, u4) requires that u = (u1, u2, u3, u4) describes a hamiltonian circuit,
and thus u is a circuit if π1, . . . , πn is a permutation of 1, . . . , n, where π1 = 1 and πi+1 = uπi

for
i = 1, . . . , (n− 1) [36]. Thus π1, . . . , πn indicates the order in which the vertices are visited.

3. Cardinality of isoperimetric parallelograms

We explore the integer lattice and search for constellation where the elements of the constellation
are forming a parallelogram ŏy̆z̆x̆ŏ. The followed approach was to select two fixed points ŏ, z̆ and to
vary the point x̆ and derive the coordinates of the lattice point y̆ . For ease of calculation perimeters
of triangles pt instead of parallelograms pp were calculated and then converted. The fixed point
to start the survey through the integer lattice was selected to be z̆ = (2, 1,−2, 0, 0, 0, 0) . The
question became now more specific: Which lattice points are generating triangles representing an
energy constellation between physical quantities and how many of these triangles have the same
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perimeter? Two polygons are called isoperimetric [37] if they have the same perimeter. A program
in MATLAB R© was first created, but rapidly computational/memory problems occurred due to the
large amount of data to be processed. The program was adapted and written in the programming
language C# . The algorithm is given in appendix A. The absolute frequency of occurrence of these
parallelogram perimeters pp are tabulated as a sequence of non-negative integers and represented
graphically for z̆ = Ĕ , as a discrete value distribution[38]. We observed that the constellations
representing energy are connected through the discrete value distribution in such a way that the
frequency f is identical to the order n of a graph G of vertices representing relations between
physical quantities and edges representing a connection between relations of physical quantities.
This approach is similar to the one followed by Wigner where the laws of nature are the entities to
which the symmetry laws apply [4].

3.1. Perimeter of a triangle
Let pt be the perimeter of the triangle formed by the 3-cycle ŏz̆x̆ŏ. The value of the perimeter

pt is obtained by the formula pt =
√
u +
√
v +
√
w with u, v, w ∈ Z+ and expressed through the

following equations:

u =
7∑
i=1

x2
i v =

7∑
i=1

(xi − zi)2 w =
7∑
i=1

z2
i .

3.2. Area of a triangle
Let At be the enclosed area of a triangle formed by the 3-cycle ŏz̆x̆ŏ. The area of the triangle

defined by the lattice points ŏz̆x̆ is given by the equation, see Abramowitz and Stegun [39], At = 1
2hb

, where h is the height of the triangle which correponds to the distance from the lattice point x̆ to
the axis ŏz̆ and b is the base of the triangle and corresponds to ‖z̆‖2. We call φ the angle between
z̆ and x̆ . From elementary goniometry, see Abramowitz and Stegun [39], we have:

cos2(φ) + sin2(φ) = 1 =
(

7∑
i=1

zixi)2 + h2‖z̆‖22

‖x̆‖22‖z̆‖22
=

(
7∑
i=1

zixi)2 + 4A2
t

‖x̆‖22‖z̆‖22
(1)

We rewrite the equation (1) to a quadratic form Q(x̆)

Q(x̆) = (
7∑
i=1

z2
i )(

7∑
i=1

x2
i )− (

7∑
i=1

zixi)2 = 4A2
t ,

which is easily transformed to a matrix equation given by:

Q(X) = XtrMX = 4A2
t = A2

p ,

and where Xtr is a 1× 7 matrix, M is a symmetric 7× 7 matrix and X is a 7× 1 matrix. The term
A2
p is the square of the area of the parallelogram formed by the 4-cycle ŏy̆z̆x̆ŏ. Observe that the

quadratic form Q(X) represents positive integers. The square of the area of the parallelogram has
the property A2

p ≥ 1, when degenerated parallelograms are excluded. The parallelogram for which
A2
p = 1 is a fundamental parallelogram of Z7. Observe that the parallelograms have the lattice

points ŏ and z̆ as foci of an ellipse Ea that has the lattice points x̆ and y̆ incident of it. From the
definition of an ellipse we have 2a =

√
u+
√
v .
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3.3. Case study for the physical quantity energy
The lattice point z̆ = (2, 1,−2, 0, 0, 0, 0) = Ĕ represents the physical quantity energy. The

graphical representation (Fig. 1) of the discrete value distribution of parallelogram perimeters pp
for parallelograms representing equations between physical quantities in Z7 resulting in the physical
quantity energy shows a rich structure. It reveals the distribution of energy constellations. The
enumeration as class 6 (Table F.12) of the first 50 frequencies is not found in the OEIS database
[40]. Observe that the lowest frequency fmin in Fig. 1 for the non-degenerated parallelograms is
fmin = 1 with exception of the point with perimeter pp = 6, that is a degenerated parallelogram.
This isoperimetric distribution shows that unique non-degenerated parallelograms exist, that form
unique constellations between physical quantities. At perimeter pp = 7, 657 we find the well-known
equation E = γm0c

2 represented in its generic form as E = κ3m0v
2 (Table 1). Observe (Table 1)

that the parity of the sum of the coordinates of the lattice points x̆ are odd while those of the lattice
points y̆ are even. The components of physical quantities which are unknown to the author are
marked Ui in the equations of components of physical quantities resulting in the physical quantity
energy. The first row represents a degenerated parallelogram. The dimensionless quantity κ1 is
associated to the dimensionless quantity γ from the special relativity theory. The second row is
recognized as the product of the linear momentum and the velocity. The third row is recognized
as the kinetic energy and if v = c, as the famous equation E = γm0c

2 . The fourth column gives
the inner product of x̆ and y̆ . Observe that the lattice points x̆ and y̆ are orthogonal for E(1, 3, 1) .
Thus, the well-known equation E = γm0c

2 is a rectangle. We show later in section 6 the importance
of this property of a parallelogram. The fourth row is a well-known form appearing as a term in a
Hamiltonian. The other rows express constellations between physical quantities that are unknown
to the author.

3.3.1. Graphs of order n=1
We use the notation E(n, g, v) for identifying the separate energy constellations. The index n

represents the order of the graph, the index g identifies the graph and the index v represents the
vertex number in the graph.
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Figure 1: Discrete value distribution of parallelogram perimeters pp in Z7 resulting in the physical quantity energy.

Table 1: Graphs of order n = 1 for energy.

n g v pp x̆ y̆ x̆ · y̆ form

1 1 1 6,000 (2,1,-2,0,0,0,0) (0,0,0,0,0,0,0) 0 E(1, 1, 1) = κ1E0

1 2 1 6,293 (1,1,-1,0,0,0,0) (1,0,-1,0,0,0,0) 2 E(1, 2, 1) = κ2p · v

1 3 1 7,657 (0,1,0,0,0,0,0) (2,0,-2,0,0,0,0) 0 E(1, 3, 1) = κ3m0v
2

1 4 1 8,928 (0,-1,0,0,0,0,0) (2,2,-2,0,0,0,0) -2 E(1, 4, 1) = κ4
p2

m0

1 5 1 11,546 (3,1,-3,0,0,0,0) (-1,0,1,0,0,0,0) -6 E(1, 5, 1) = κ5U1U2

1 6 1 12,845 (-1,-1,1,0,0,0,0) (3,2,-3,0,0,0,0) -8 E(1, 6, 1) = κ6U3U4

1 7 1 17,146 (4,1,-4,0,0,0,0) (-2,0,2,0,0,0,0) -16 E(1, 7, 1) = κ7
U5

v2

1 8 1 19,734 (4,3,-4,0,0,0,0) (-2,-2,2,0,0,0,0) -22 E(1, 8, 1) = κ8
U6

p2

1 9 1 23,415 (-3,-1,3,0,0,0,0) (5,2,-5,0,0,0,0) -32 E(1, 9, 1) = κ9U7U8

. . . . . . . . . . . . . . . . . . . . . . . .
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n g v pp x̆ y̆ x̆ · y̆ form

1 10 1 24,743 (5,3,-5,0,0,0,0) (-3,-2,3,0,0,0,0) -36 E(1, 10, 1) = κ10U9U10

The distribution in Fig. 1 is truncated at pp = 25 due to edge effects at the hypercube surface.
The edge effects are related to the memory capacity of the author’s computer. The computation of
the distribution in Z7 was performed for a Chebyshev norm ‖x̆‖∞ = 5 . The analysis covers 524287
parallelograms. The connectivity of the graphs is represented by n = f = 1 that is a single vertex
having a loop. The loop, which is an edge, is represented by a 7×7 signed permutation matrix that
transforms the relations in itself and so we find for the permutation matrix P11 = I7 . The signed
permutation matrices π are Z-linear maps for which πŏ = ŏ and π(−ă) = −πă for all ă ∈ Z7 .
Observe in Fig. 2 that all the unique energy equations are embedded in Z3 × {0}4 and localized
in the hyperplane Hă = {(X1, . . . , X7) | X1 + X3 = 0} with ă = (1, 0, 1, 0, 0, 0, 0) that represents
the product of length and time. We know that this product is a relativistic invariant in the special
relativity theory. Observe in Fig. 2 the symmetry axes determined by the line containing origin
and energy and the line containing velocity and linear momentum. We calculated the squared area
A2
p of each parallelogram and find for the graphs of order n = f = 1 the equation log2(A2

p) = 2k+ 1
with k ∈ Z+ .

−3−2−1 0 1 2 3 4
−3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0
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2
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MASS
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T
IM
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ORIGIN

ENERGY

Figure 2: Unique parallelograms resulting in the physical quantity energy.

Let xi = 1
κi

with i = 1 to 10. The set X = {x1, . . . , x10} represents 10 dimensionless physical
variables xi ∈ R that are constructed from graphs of order 1.

Example 3.1. x1 = E0

E
, x2 = p · v

E
, x3 = m0v

2

E
, x4 = p2

m0E
, . . .

We define a monomial xα =
∏10
i=1 x

αi
i where α = (α1, . . . , α10) is a 10-tuple of non-negative

integers. We form a finite linear combination of monomials xα to obtain a multivariate polyno-
mial f . The set of all multivariate polynomials in x1, . . . , x10 with coefficients in R is denoted
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R[x1, . . . , x10] [41]. Let f1, . . . , fs be multivariate polynomials in R[x1, . . . , x10] then we define
V(f1, . . . , fs) = {(x1, . . . , x10) ∈ R10 | fi(x1, . . . , x10) = 0} for all 1 ≤ i ≤ s . We call V(f1, . . . , fs)
the affine variety defined by f1, . . . , fs [41].

Example 3.2. V(x2
2 + x2

3− 1), that describes a unit circle in R2, is the variety that represents the
states of a free particle of rest mass m0, after the assignment v = c in the dimensionless variable
x3 .

The further elaboration on the construction of other varieties based on dimensionless variables
is beyond the scope of the present article.

3.3.2. Graphs of order n=2
We analyse the parallelograms in Fig. 1 having frequency f = 2 . The result is given in the

Table 2. Components of physical quantities which are unknown to the author are marked Uj . The
first and second row in Table 2 represent two equations. The first equation is recognized as Planck’s
equation E = κ1hν, when the angular momentum J = h . The second equation W = κ2

∫
F · ds

represents the work done by the force F . Both equations are combined to a new constellation
described by the form κ2

∫
F · ds = κ1hν .

Table 2: Graphs of order n = 2 for energy.

n g v pp x̆ y̆ x̆ · y̆ form

2 1 1 6,899 (0,0,-1,0,0,0,0) (2,1,-1,0,0,0,0) 1 E(2, 1, 1) = κ1Jω

2 1 2 6,899 (1,0,0,0,0,0,0) (1,1,-2,0,0,0,0) 1 E(2, 1, 2) = κ2Fs

2 2 1 7,301 (2,0,-1,0,0,0,0) (0,1,-1,0,0,0,0) 1 E(2, 2, 1) = κ3
∂A

∂t

∂m

∂t

2 2 2 7,301 (1,0,-2,0,0,0,0) (1,1,0,0,0,0,0) 1 E(2, 2, 2) = κ4aU1

2 3 1 9,483 (-1,0,0,0,0,0,0) (3,1,-2,0,0,0,0) -3 E(2, 3, 1) = κ5
U2

r

2 3 2 9,483 (0,0,1,0,0,0,0) (2,1,-3,0,0,0,0) -3 E(2, 3, 2) = κ6Pt

2 4 1 11,075 (3,2,-2,0,0,0,0) (-1,-1,0,0,0,0,0) -5 E(2, 4, 1) = κ7U3U4

2 4 2 11,075 (2,2,-3,0,0,0,0) (0,-1,1,0,0,0,0) -5 E(2, 4, 2) = κ8
U5
m

t

The signed 7× 7 permutation matrix P211,212 that transforms all the relations of the graphs of
order 2 is:

P211,212 =



0 0 −1 0 0 0 0
0 1 0 0 0 0 0
−1 0 0 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
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The matrix P211,212 has the property of being a symmetric matrix. Observe that the permutation
matrix P211,212 has a block diagonal structure:

P211,212 =
[
S 04
04 I4

]
S =

 0 0 −1
0 1 0
−1 0 0


Observe that the permutation matrices for the graphs of order 2 have a 4× 4 identity matrix in the
last bottom block matrix and so are acting only in Z3 × 04 . The third row of Table 2 represents
the equation E = κ3

∂A

∂t

∂m

∂t
, where A represents an area. The factor ∂A

∂t
represents a diffusion

constant D or a flux of vorticity. The fourth row of Table 2 represents the equation E = κ4amr
where a represents the acceleration and where E is recognized as potential energy when a = g with
g the acceleration of the Earth gravitation. Both constellations combine to κ3

∂A

∂t

∂m

∂t
= κ4amr .

We anticipate a first order partial differential equation:

κ3D
∂m

∂t
− κ4amr = 0 .

The combinations of the constellations could also generate the following partial differential equation:

κ3
∂r2

∂t

∂m

∂t
− κ4amr = r(2κ3

∂r

∂t

∂m

∂t
− κ4am) = r(2κ3v

∂m

∂t
− κ4

∂v

∂t
m) = 0 .

We see that the form and the combination of constellations is not uniquely defining one equation
but a set of equations.

3.3.3. Graphs of order n=8
We analyse the parallelograms in Fig. 1 having frequency f = n = 8 . The first graph of order 8

corresponds with a parallelogram having the perimeter pp = 7, 464 and the second graph of order 8
has a perimeter pp = 8, 325 . The result for the first and second graphs are given in the Table 3. The
components of physical quantities which are unknown to the author are marked Uj . The author is
not aware if these equations are known to the physics community. Observe that the constellations
of graph g = 1 are all related to E(1, 2, 1) = κ2p · v which is a graph of order n = 1 .

Table 3: Graphs of order n = 8 for energy.

n g v pp x̆ y̆ x̆ · y̆ form

8 1 1 7,464 (1,0,-1,-1,0,0,0) (1,1,-1,1,0,0,0) 1 E(8, 1, 1) = κ1
v

I
U1

8 1 2 7,464 (1,0,-1,0,-1,0,0) (1,1,-1,0,1,0,0) 1 E(8, 1, 2) = κ2
v

T
U2

8 1 3 7,464 (1,0,-1,0,0,-1,0) (1,1,-1,0,0,1,0) 1 E(8, 1, 3) = κ3
v

n
U3

8 1 4 7,464 (1,0,-1,0,0,0,-1) (1,1,-1,0,0,0,1) 1 E(8, 1, 4) = κ4
v

L
U4

8 1 5 7,464 (1,0,-1,0,0,0,1) (1,1,-1,0,0,0,-1) 1 E(8, 1, 5) = κ5U5
p

L

. . . . . . . . . . . . . . . . . . . . . . . .
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n g v pp x̆ y̆ x̆ · y̆ form

8 1 6 7,464 (1,0,-1,0,0,1,0) (1,1,-1,0,0,-1,0) 1 E(8, 1, 6) = κ6U6
p

n

8 1 7 7,464 (1,0,-1,0,1,0,0) (1,1,-1,0,-1,0,0) 1 E(8, 1, 7) = κ7U7
p

T

8 1 8 7,464 (1,0,-1,1,0,0,0) (1,1,-1,-1,0,0,0) 1 E(8, 1, 8) = κ8U8
p

I

8 2 1 8,325 (0,0,0,-1,0,0,0) (2,1,-2,1,0,0,0) -1 E(8, 2, 1) = κ9
1
I
U1

8 2 2 8,325 (0,0,0,0,-1,0,0) (2,1,-2,0,1,0,0) -1 E(8, 2, 2) = κ10
1
T
U2

8 2 3 8,325 (0,0,0,0,0,-1,0) (2,1,-2,0,0,1,0) -1 E(8, 2, 3) = κ11
1
n
U3

8 2 4 8,325 (0,0,0,0,0,0,-1) (2,1,-2,0,0,0,1) -1 E(8, 2, 4) = κ12
1
L
U4

8 2 5 8,325 (0,0,0,0,0,0,1) (2,1,-2,0,0,0,-1) -1 E(8, 2, 5) = κ13L
E

L

8 2 6 8,325 (0,0,0,0,0,1,0) (2,1,-2,0,0,-1,0) -1 E(8, 2, 6) = κ14n
E

n

8 2 7 8,325 (0,0,0,0,1,0,0) (2,1,-2,0,-1,0,0) -1 E(8, 2, 7) = κ15T
E

T

8 2 8 8,325 (0,0,0,1,0,0,0) (2,1,-2,-1,0,0,0) -1 E(8, 2, 8) = κ16I
E

I

The number of signed permutation matrices for graphs of order 8 is
(

8
2

)
= 28 . The permutation

matrix P811,812 that transforms the constellation E(8, 1, 1) in E(8, 1, 2) is:

P811,812 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0


and is one of the 28 permutation matrices describing the connectivity between these 8 constella-
tions. It is obvious that this matrix P811,812 is not symmetric. The permutation matrix P821,822
that transforms the constellation E(8, 2, 1) in E(8, 2, 2) is identical to P811,812 . Observe that the
permutation matrix P811,812 has a block structure:

P811,812 =
[

I3 O4
O4 T

]
T =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
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Observe that the permutation matrices for the graphs of order 8 have a 3× 3 identity matrix in the
first upper block matrix and so are not transforming the Z3×04 . Consider the Z-module Z7 and the
Z-submodule Z3 then there exist a canonical Z-linear map from Z7 to the factor group Z7/Z3 that
sends a lattice point x̆ ∈ Z7 to the element x̆+ Z3 . We study the dependency of the isoperimeter
distribution for the physical quantity energy as function of the dimension d of the integer lattice
when 3 ≤ d ≤ 8 . The results (Table 4) show that the frequency f in the isoperimeter distribution
for the physical quantity energy is uncorrelated with the dimension d of the integer lattice when
d ≥ 5 and f = 1 or f = 2 .

Table 4: Variation of the frequency f of the isoperimeter distribution
for the physical quantity energy as a function of the dimension d of the
Z-modules denoted as Zd when 3 ≤ d ≤ 8.

Id pp Z3 Z4 Z5 Z6 Z7 Z8

1 0 1 1 1 1 1 1
2 6,146 1 1 1 1 1 1
3 6,449 2 2 2 2 2 2
4 6,650 2 2 2 2 2 2
5 6,732 0 2 4 6 8 10
6 6,828 1 1 1 1 1 1
7 7,059 0 4 8 12 16 20
8 7,162 0 2 4 6 8 10
9 7,181 1 5 9 13 17 21

10 7,236 2 2 6 14 26 42
11 7,414 2 4 6 8 10 12
12 7,464 1 1 1 1 1 1

3.4. Case study for the physical quantity force
The lattice point z̆ = (1, 1,−2, 0, 0, 0, 0) = F̆ represents the physical quantity force. The graph-

ical representation (Fig. 3) of the discrete value distribution of parallelogram perimeters pp for
parallelograms representing equations between physical quantities in Z7 resulting in the physical
quantity force shows also a rich structure. It reveals the force constellations. Observe that the
lowest frequency fmin in Fig. 3 is fmin = 1 . Detailed analysis of the collinearity of x̆ and y̆ indi-
cates that the points with perimeter pp = 4, 899 and pp = 14, 697 are degenerated parallelograms.
Observe (Table 5) that the parity of the sum of the coordinates of the lattice points x̆ and y̆ are
always equal. The components of physical quantities which are unknown to the author are marked
Uj in the equations of components of physical quantities resulting in the physical quantity force.

Table 5: Unique parallelograms in Z7 for the physical quantity force.

pp x̆ y̆ x̆ · y̆ form

4,899 (1,1,-2,0,0,0,0) (0,0,0,0,0,0,0) 0 F = κ1F0

5,464 (1,1,-1,0,0,0,0) (0,0,-1,0,0,0,0) 1 F = κ2
dp
dt

5,657 (1,0,-1,0,0,0,0) (0,1,-1,0,0,0,0) 1 F = κ3v ∂m
∂t

. . . . . . . . . . . . . . .
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pp x̆ y̆ x̆ · y̆ form

8,633 (0,0,1,0,0,0,0) (1,1,-3,0,0,0,0) -3 F = κ4t
dF
dt

11,710 (-1,-1,1,0,0,0,0) (2,2,-3,0,0,0,0) -7 F = κ5U1
dp2

dt

14,697 (-1,-1,2,0,0,0,0) (2,2,-4,0,0,0,0) -12 F = κ6U2F
2

18,122 (-1,-1,3,0,0,0,0) (2,2,-5,0,0,0,0) -19 F = κ7U3
dF 2

dt

21,361 (-2,-2,3,0,0,0,0) (3,3,-5,0,0,0,0) -27 F = κ8
1

(dp
2

dt
)
(dp
dt

)2p

Wilczek [42, 43, 44] elaborated on Newton’s second law F = ma . We observe that this form of
constellation is not appearing in the list of unique parallelograms. We don’t find the lattice points
(0,1,0,0,0,0,0) and (1,0,-2,0,0,0,0) as vertices of unique parallelograms, which is in correspondence
with Wilczek’s arguments. What we observe in the detailed data of the discrete value distribution

is the occurrence of F = ma in a constellation with the form κ8r ∂
2m

∂t2
= κ9ma, having frequency

f = 2 for a perimeter pp = 6, 472 . The second row is the basic form where the force is expressed as
the time derivative of the linear momentum [42]. The relation between force and energy, where a
force is expressed as the space derivative of the energy [42] is found in the discrete value distribution
at perimeter pp = 8 and has frequency f = 26 . At perimeter pp = 10, 312 we find another

constellation form κ10
∂E

∂t

∂m

∂t
= κ11vU4 with frequency f = 2 . The list (Table 5) of vertices, as

well as the complete distribution is derived purely mathematically without a priori knowledge of
physics using an algorithm Appendix A based on discrete geometry. Observe in Fig. 4 that all
the unique force constellations are embedded in Z3 × 04 and localized in the hyperplane Hb̆ =
{(X1, . . . , X7) | X1 − X2 = 0} with b̆ = (1,−1, 0, 0, 0, 0, 0) that represents the reciprocal of the
linear density. One exception is observed for the equation F = κ2v ∂m

∂t
that forms a parallelogram

orthogonal to the hyperplane Hb̆ . Observe in Fig. 4 the symmetry axes determined by the line
containing origin and force and the line containing the time derivative and impulse.

3.5. Invariance of the isoperimetric distribution
Theorem 1. The isoperimetric distribution, for parallelograms containing the integer lattice points
ŏ and z̆, is invariant when the coordinates of the integer lattice point z̆ are subjected to a signed
permutation.

Proof. The isometric property of the above mapping and mapping combinations is the origin of
the invariance in the isoperimetric distribution [45]. The perimeter of the parallelogram is based
on the Euclidean distance (`2-distance) between the lattice points and so neither a permutation of
the coordinates nor a change in the sign of the coordinates will modify the value of the distance
between the lattice points.
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For n-ary equations where n ≥ 4 we have not a parallelogram, however the isometry properties
remain valid when considering the path length of the path connecting the n + 1 lattice points of
the constellation. The automorphism group of the 7-dimensional cubic lattice Aut(Z7) contains all
permutations and sign changes of the 7 coordinates and has order 27 7! = 645120 . Each signed
permutation matrix is an orthogonal matrix [45].

Example 3.3. The components of the physical quantity force, represented by (1, 1, -2, 0, 0, 0, 0),
and the components of the physical quantity angular momentum, represented by (2, 1, -1, 0, 0, 0,
0), have the same isoperimetric distribution.

Example 3.4. The components of the physical quantity mass, represented by (0, 1, 0, 0, 0, 0, 0),
and the components of the physical quantity frequency, represented by (0, 0, -1, 0, 0, 0, 0), have
the same isoperimetric distribution.

The fact that some physical quantities are related through a signed permutation implies that
these physical quantities are qualitatively indistinguishable [46]. Feynman remarks that “the fun-
damental laws of physics, when discovered, can appear in so many different forms that are not
apparently identical at first, but with a little mathematical fiddling you can show the relationship”
[7]. These many different forms are what we define as the constellations of the physical quantity
and the graphs of order n express the relationship between these geometrical forms.

4. Classification of components of physical quantities

To classify the components of physical quantities we need to find a partitioning of the integer
lattice Z7 . It is known from linear vector quantization [47, 48, 49] that the `2-norm and the phase
of a lattice point are used to partition a lattice. However, this norm and phase are not the correct
classifiers for the physical quantities. If we use as classifier the `∞-norm we obtain equivalence
classes for which the elements of the class have the same isoperimetric distribution.

4.1. Measure polytope properties
Theorem 2. Let P sd be a centrally symmetric d-dimensional measure polytope of edge-length 2s
then the cardinality of P sd is (2s+ 1)d .

Proof. For d = 0 the result is trivial.
For d = 1 we have the set P s1 = {−s, . . . , 0, . . . , s} with edge-length 2s . Let us denote the cardinality
of the set S by # (S) then # (P s1 ) = 2s+ 1 .
For d = 2 we have to increase the dimension d by 1, which corresponds to calculate the Cartesian
product of the sets P s1 × P s1 = P s2 .
It is a property of cardinal numbers [50] that: # (P s2 ) = # (P s1 ) × # (P s1 ) = # (P s1 ) · # (P s1 ) =
(2s+ 1)2 . Assume that #

(
P sd−1

)
= (2s+ 1)d−1 . Then # (P sd ) = #

(
P sd−1

)
·# (P s1 ) = (2s+ 1)d−1 ·

(2s+ 1) = (2s+ 1)d .

We distinguish the measure polytope P sd by the parameters d and s, where d represents the
dimension of the integer lattice and s represents the edge length. We define a leader class of a
measure polytope as:

Definition 2. A leader class of a measure polytope is the set of lattice points of Z7 that have the
same isoperimetric distribution.
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A leader class of a measure polytope of Z7 is noted as [(X1, . . . , X7)] where (X1, . . . , X7) are the
coordinates of the representative lattice point. Each leader class forms a set of lattice points that
are symmetric about the origin. The cardinality of a leader class of a measure polytope is calculated
using elementary combinatorics. Let A = {0, 1, 2, . . . , k} be the alphabet of measure polytope with
edge length 2k . The representative of a leader class of a measure polytope is a word w constructed
from the alphabet A . The words w have a length d that corresponds to the dimension of Z7 .
Let di be the number of characters of type i of the alphabet A . Suppose that the characters are
subjected to permutation and change of sign, then using combinatorics the cardinality is given by
the equation

# (w) = 2d−d0
d!

d0!d1!d2! . . . dk! . (2)

Observe that each measure polytope in Z7 represents a centrally symmetric lattice polytope [27,
51, 52, 53]. The number of vertices in each leader class is equal to the cardinality of w . Observe
also that the representative lattice point, in coding theory [47] called an absolute leader, has only
coordinates that are non-negative integers. We define the total degree of a monomial as:

Definition 3. A monomial m in u1, u2, . . . , u7 is a product of the form:

m =
7∏
i=1

uX
i

i , (3)

where all the exponents Xi ∈ Z+ and ui ∈ U (see section 1). The total degree deg of this monomial
is the sum X1 + . . .+X7 .

From the 7-tuple of non-negative integer exponents (X1, . . . , X7) ∈ Z7
+ a monomial [54] is

constructed one-to-one of the form m =
∏7
i=1 u

Xi

i that we compare with equation (??). It means
that a lot of results known from the commutative module of monomials are applicable to the
classification of the components of physical quantities. The number of classes of monomials (Table 6)
with Chebyshev norm ‖x̆‖∞ ≤ s in Z7 is the result from application of lemma 4 [55].

Table 6: Properties of the measure polytopes P s
7 in Z7 for s ≤ 10 .

‖x̆‖∞ = s sum(# ([a])) cumul(sum(# ([a]))) # (P s
7 ) cumul(# (P s

7 ))

0 1 1 1 1
1 2186 2187 7 8
2 75938 78125 28 36
3 745418 823543 84 120
4 3959426 4782969 210 330
5 14704202 19487171 462 792
6 43261346 62748517 924 1716
7 108110858 170859375 1716 3432
8 239479298 410338673 3003 6435
9 483533066 893871739 5005 11440
10 907216802 1801088541 8008 19448

In (Table 6) the second column shows the number of vertices while the third column gives
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the cumulated number of vertices. The fourth and fifth columns have a similar meaning but are
expressing the number of classes in each measure polytope P s7 .

4.2. Enumeration of the measure polytopes
The enumeration table (Table C.9) of the measure polytope P 3

7 consists of 8 columns. The
second column is the row identifier. The third column gives the representative of the leader class.
The fourth column contains the sum of the absolute value of the coordinates of the lattice points
being elements of the leader class that is exclusively the total degree of the monomial associated
with the leader class. The fifth column gives the parity of the representative of the leader class.
The sixth column gives the `1-norm of the representative. The seventh column gives the cardinality
of the leader class. The eighth column gives the Gödel number of the representative. The ordering
of the classes is based on graded reverse lex order [54]. We derive from Table 6 that the measure

polytopes P s7 are partitioned in
(

7 + s− 1
s

)
equivalence classes. The cardinality of the leader

classes is related to the theta series of the integer lattice Z7. We find in the OEIS [40] the sequence
A008451 given by r7(N) = 1, 14, 84, 280, 574, 840, 1288, 2368, 3444, 3542, 4424, 7560, 9240, 8456,
11088, 16576, 18494, 17808, 19740, 27720, 34440, 29456, 31304, 49728, 52808, 43414, 52248, 68320,
74048, 68376, 71120, 99456, 110964, 89936, 94864, 136080 . . . . The sequence represents the number
of ways of writing a positive integer N as a sum of seven integral squares and is defined by:

ΘZ7(z) =
∞∑
N=0

r7(N)qN , (4)

where q = eπiz and N is the norm of the lattice point [56]. The enumeration table (Table D.10)
gives the relation between the sequence A008451 and the partitioning of 7-spheres in leader classes
of the measure polytopes. The common physical quantities (Table ??) which belong to the measure
polytopes, where the variable ‖x̆‖∞ = s taking values from 0 to 10, are enumerated. Table ?? is far
from exhaustive, but it highlights the sparse distribution of the common physical quantities when
taking in consideration the cardinalities (Table 6 ) of classes and vertices.

5. Paths, walks and cycles in a 7-dimensional integer lattice

A path in Z7 is a non-empty graph P = (V,E) of the form V = {x̆0, . . . , x̆k} and E =
{x̆0x̆1, . . . , x̆k−1x̆k} where the x̆i are all distinct [33]. As we will connect points in the integer
lattice forming parallelograms, we use the term k-cycle from graph theory [33], where the k-cycle is
a simple graph of length k, i.e., consisting of k vertices and k edges and represented by a sequence
of consecutive vertices x̆0 . . . x̆k−1x̆0 . Equations between physical quantities are represented by
paths in Z7 . Dimensional products are represented by cycles in Z7 . A walk of length k in Z7 is
a non-empty alternating sequence v̆0e0v̆1e1 . . . ek−1v̆k of vertices v̆i and edges ei in Z7 such that
ei = {v̆i, v̆i+1} for all i < k .

5.1. Gödel walk in a 7-dimensional integer lattice
We encode each integer lattice point of Z7

+ by using a similar scheme to the Gödel encoding
[57] applied to 7 non-negative integer variables. We define the Gödel number in Zd+, where d is the
dimension of the integer lattice:

φd(X1 . . . Xd) =
d∏
i=1

pX
i

i , (5)
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where pi is the i-th prime number, x̆ = (X1, . . . , Xd) and Xi ∈ Z+ .

Example 5.1. φ7(1110000) = 21 · 31 · 51 · 70 · 110 · 130 · 170 = 30

This encoding which we denote as φ7 is injective between Z7
+ and Z+ . The range of φ7 is a

subset Φ7 of the non-negative integers Z+ because all the primes which are different from the first 7
primes are not images of lattice points of Z7

+, as well as all the composite numbers having divisors
larger than 17. Observe that each of the base physical quantities of the set B are assigned to a prime
number. The base physical quantities play the same role as the prime numbers, being the atoms in
number theory [58]. If we walk through the integer sublattice Z7

+ respecting the ordering created
by the Gödel encoding, then we generate a series of segments in Z7

+ . We call this walk a Gödel walk
through the integer sublattice Z7

+ . The segments are known in number theory as the prime gaps
g(p) = n of gap length n. All the leader class representatives are located on the Gödel walk. When
the Gödel walk is performed in Z25

+ then all the first 100 non-negative integers will be visited (Fig. 5).
When restricting the dimension to d = 7 we find 67 non-negative integers that will be visited. An
enumeration (Table ??) of the first 67 lattice points shows also the crossings of the Gödel walk with
the measure polytopes P s7 . The successive lattice points of the Gödel walk are orthogonal when
calculated for the first 100 lattice points in the integer lattice Z25

+ . Observe that the Gödel walk
represents a unique walk in Zk+, where k ∈ Z+ because it requires orthogonality between successive
lattice points and because it minimizes the function φk at each lattice point. There are 23 segments
in Z7

+ and 28 segments in Z3
+ for the first 100 non-negative integers. The orthogonality between

successive lattice points remains valid within the segments that have more than 1 lattice point.
This walk encodes all the physical quantities of Z7

+ up to a signed permutation. Observe that the
leader class representative has always the smallest Gödel number of the class. Physicists represent
correlations between physical quantities graphically in the form of cubes that contain the respective
physical quantities as the axes of the cube. The Gödel walk presents a natural way of selecting
mutually orthogonal sequential physical quantities. Inspection of the list (Table ??) results in cubes
C(i, j, k), where i, j, k are successive Gödel numbers. We find 7 cubes C(3, 4, 5) = {M,L2, T},
C(5, 6, 7) = {T,ML, I}, C(7, 8, 9) = {I, L3,M2}, C(9, 10, 11) = {M2, LT,Θ}, C(11, 12, 13) =
{Θ,ML2, N}, C(13, 14, 15) = {N,LI,MT}, C(15, 16, 17) = {MT,L4, J} where we use the agreed
[28] symbol for the dimensions.

Example 5.2. The quantityML in the cube C(5, 6, 7) = {T,ML, I} could be expressed as function
of ~

c
and the product T × I is nothing else than the electric charge. The Compton effect for an

electron can be represented by a volume e~
c

in the cube C(5, 6, 7) .

The mutual orthogonality in the 7 cubes is invariant when the integer lattice points repre-
senting the cube axes are subject to a signed permutation. We transform the set {M,L2, T} in
{M,L2, T−1} and observe that the volume of the new cube represents the angular momentum. The
set {M2, LT,Θ} can be transformed to {M2, LT−1,Θ} representing a cube with on the x-axis the
mass squared, on the y-axis the speed and on the z-axis the thermodynamic temperature.

5.2. Additive partitioning of leader classes
The encoding of the leader classes with a Gödel number allows the factorization of the Gödel

number in distinct factors. Richard J. Mathar (http://home.strw.leidenuniv.nl/ mathar/) has listed
in the OEIS [40] the integer series A045778 that gives the factorization of non-negative integers up
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Figure 5: Gödel walk in Z25
+ .

to n=1500. In the present article we focussed on the most elementary constellation of lattice points
that form a parallelogram. The leader class is the representative for all the physical quantities
which are vertices of a partition of a measure polytope P s7 . A signed permutation can be found
that maps the factored equations to equivalent equations of the desired physical quantity that is
an element of the leader class. We show the method for the physical quantity energy.

Example 5.3. The leader class for energy is [22104]. It has Gödel number φ7(2210000) = 180 .
From the OEIS[40] A045778 series we find as factorizations:

180 = 2× 3× 5× 6

The 4-factoring results in 1 equation that represents a 5-ary equation. By applying the Gödel
decoding on the 4-factoring of φ7(2210000) = 180 , we find the additive partitioning of the leader
class representative (2, 2, 1, 0, 0, 0, 0) in a 5-ary equation:

(i) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (1, 0, 0, 0, 0, 0, 0) + (0, 1, 0, 0, 0, 0, 0) + (0, 0, 1, 0, 0, 0, 0) +
(1, 1, 0, 0, 0, 0, 0);

180 = 2×3×30 = 2×5×18 = 2×6×15 = 2×9×10 = 3×4×15 = 3×5×12 = 3×6×10 = 4×5×9

The 3-factoring results in 8 equations that represent each a 4-ary equation. The additive partitioning
of the leader class representative (2,2,1,0,0,0,0) in 4-ary equations are:

(i) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (1, 0, 0, 0, 0, 0, 0) + (0, 1, 0, 0, 0, 0, 0) + (1, 1, 1, 0, 0, 0, 0)

(ii) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (1, 0, 0, 0, 0, 0, 0) + (0, 0, 1, 0, 0, 0, 0) + (1, 2, 0, 0, 0, 0, 0)
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(iii) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (1, 0, 0, 0, 0, 0, 0) + (1, 1, 0, 0, 0, 0, 0) + (0, 1, 1, 0, 0, 0, 0)

(iv) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (1, 0, 0, 0, 0, 0, 0) + (0, 2, 0, 0, 0, 0, 0) + (1, 0, 1, 0, 0, 0, 0)

(v) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (0, 1, 0, 0, 0, 0, 0) + (2, 0, 0, 0, 0, 0, 0) + (0, 1, 1, 0, 0, 0, 0)

(vi) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (0, 1, 0, 0, 0, 0, 0) + (0, 0, 1, 0, 0, 0, 0) + (2, 1, 0, 0, 0, 0, 0)

(vii) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (0, 1, 0, 0, 0, 0, 0) + (1, 1, 0, 0, 0, 0, 0) + (1, 0, 1, 0, 0, 0, 0)

(viii) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (2, 0, 0, 0, 0, 0, 0) + (0, 0, 1, 0, 0, 0, 0) + (0, 2, 0, 0, 0, 0, 0)

180 = 2× 90 = 3× 60 = 4× 45 = 5× 36 = 6× 30 = 9× 20 = 10× 18 = 12× 15

The 2-factoring results also in 8 equations that represent each a ternary equation. The additive
partitioning of the leader class representative (2, 2, 1, 0, 0, 0, 0) in 3-ary equations are:

(i) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (1, 0, 0, 0, 0, 0, 0) + (1, 2, 1, 0, 0, 0, 0)

(ii) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (0, 1, 0, 0, 0, 0, 0) + (2, 1, 1, 0, 0, 0, 0)

(iii) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (2, 0, 0, 0, 0, 0, 0) + (0, 2, 1, 0, 0, 0, 0)

(iv) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (0, 0, 1, 0, 0, 0, 0) + (2, 2, 0, 0, 0, 0, 0)

(v) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (1, 1, 0, 0, 0, 0, 0) + (1, 1, 1, 0, 0, 0, 0)

(vi) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (0, 2, 0, 0, 0, 0, 0) + (2, 0, 1, 0, 0, 0, 0)

(vii) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (1, 0, 1, 0, 0, 0, 0) + (1, 2, 0, 0, 0, 0, 0)

(viii) (2, 2, 1, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 0, 0) + (2, 1, 0, 0, 0, 0, 0) + (0, 1, 1, 0, 0, 0, 0)

We conclude that the leader class representative (2, 2, 1, 0, 0, 0, 0) can be partitioned in 17 distinct
terms. As this leader class is representative for the physical quantity energy we conclude to the
existence of 17 distinct forms of equations representing the physical quantity energy. Generalisation
of this methodology will reveal the generic constellations for the leader class representatives.
The signed permutation matrix Penergy transforms the leader class representative (2, 2, 1, 0, 0, 0, 0)
in the lattice point (2, 1,−2, 0, 0, 0, 0) and is given below:

Penergy =



1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 −1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(7)

We apply the matrix Penergy on the seventeen equations that represent the additive partitions of
the leader class representative (2,2,1,0,0,0,0) and find the energy equations given in Table 7 . The
columns marked ĭ, j̆, k̆, l̆ and m̆ contain the 17 lattice points in Z7 forming the energy constellation.
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Table 7: Complete set of generic equations for the quantity energy.

ĭ j̆ k̆ l̆ m̆ form

(07) (1, 06) (0, 0,−1, 04) (0, 1, 05) (1, 0,−1, 04) E1 = κ1xνmv

(07) (1, 06) (0, 0,−1, 04) (1, 1,−1, 04) (07) E2 = κ2xνp

(07) (1, 06) (0, 1, 05) (1, 0,−2, 04) (07) E3 = κ3xma

(07) (1, 06) (1, 0,−1, 04) (0, 1,−1, 04) (07) E4 = κ4xv
∂m

∂t

(07) (1, 06) (0, 0,−2, 04) (1, 1, 05) (07) E5 = κ5xν
2 ∫ mdx

(07) (0, 0,−1, 04) (2, 06) (0, 1,−1, 04) (07) E6 = κ6νx
2 ∂m

∂t

(07) (0, 0,−1, 04) (0, 1, 05) (2, 0,−1, 04) (07) E7 = κ7νm
∂A

∂t

(07) (0, 0,−1, 04) (1, 0,−1, 04) (1, 1, 05) (07) E8 = κ8νv
∫
mdx

(07) (2, 06) (0, 1, 05) (0, 0,−2, 04) (07) E9 = κ9x
2mν2

(07) (1, 06) (1, 1,−2, 04) (07) (07) E10 = κ10xF

(07) (0, 0,−1, 04) (2, 1,−1, 04) (07) (07) E11 = κ11νJ

(07) (2, 06) (0, 1,−2, 04) (07) (07) E12 = κ12x
2 ∂

2m

∂t2

(07) (0, 1, 05) (2, 0,−2, 04) (07) (07) E13 = κ13mv
2

(07) (1, 0,−1, 04) (1, 1,−1, 04) (07) (07) E14 = κ14vp

(07) (0, 0,−2, 04) (2, 1, 05) (07) (07) E15 = κ15ν
2 ∫ ∫ mdA

(07) (1, 1, 05) (1, 0,−2, 04) (07) (07) E16 = κ16a
∫
mdx

(07) (2, 0,−1, 04) (0, 1,−1, 04) (07) (07) E17 = κ17
∂A

∂t

∂m

∂t

The symbols used in the column form have the following interpretation: Ei: energy; x: position,
distance; t: time; ν: frequency; m: mass; A: area; v: speed; F : force; J : angular momentum; p:
linear momentum; a: acceleration; κi: dimensionless variable. The same methodology, as shown
for the physical quantity energy, can be applied to any physical quantity. This will then generate
for that physical quantity its complete set of generic equations. Table ?? enumerates for leader
classes with Gödel number ≤ 1500 the factorization of the Gödel number in i distinct factors. The
number of distinct factors is found in the repective columns Fi where i ∈ [2, . . . , 5] . We conclude
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that there is a finite number of distinct equations for each physical quantity.

5.3. Bicolouring of a 4-cycle representing an equation between physical quantities
The hypothesis of the existence of rules that have to be respected by the laws of physics, has

been proposed by Wigner and Feynman, see Lange[10]. We elaborate on this problem by proving
one of these rules applicable for ternary equations [z] = [κ][x][y] between the distinct physical
quantities [κ], [x], [y], [z] . The rule constraints the bicolouring of 4-cycles [59, 60, 61] in Z7 .

Theorem 3. Any ternary equation [z] = [κ][x][y] between distinct physical quantities [κ], [x], [y], [z]
represents a distinct colouring pattern (psc (ŏ) ,psc (x̆) ,psc (y̆) ,psc (z̆)) that is an element of the set
of colouring patterns {(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0)} .

Proof. We will use the method proof by exhaustion for this theorem. Let the four distinct integer
lattice points ŏ, y̆, z̆, y̆ be the vertices of a parallelogram, represented by the 4-cycle ŏy̆z̆x̆ŏ. The
parallelogram is the representation of the ternary equation [z] = [κ][x][y] in the integer lattice Z7 .
Let the colouring pattern be defined by the 4-tuple (psc (ŏ) ,psc (x̆) ,psc (y̆) ,psc (z̆)) in which ŏ
is the origin of Z7 . By convention psc (ŏ) is placed as the first element and psc (z̆) as the last
element in the colouring patterns. By the definition of the “psc” function we obtain psc (ŏ) = 0 .
A 4-tuple having only two characters {0,1} has in total 24 = 16 combinations of 4-tuples. So, we
will review the 16 cases. The condition that the first element of the 4-tuple has to be 0 reduces the
number of combinations to 23 = 8 being the set of colouring patterns {(0,0,0,0), (0,0,0,1), (0,0,1,0),
(0,0,1,1), (0,1,0,0), (0,1,0,1),(0,1,1,0), (0,1,1,1)}. The four distinct integer lattice points ŏ, x̆, y̆, z̆ of
the parallelogram have the property x̆+ y̆ = z̆ , see Fig. ??. From elementary number theory [62],
it is known that:

(i) even ± even = even

(ii) odd ± odd = even

(iii) even ± odd = odd

The function “psc” is binary-valued on Z7 satisfying psc (x̆ + y̆) = psc (x̆)+psc (y̆) for all x̆, y̆ ∈ Z7 .
Thus the 4-tuples have the form (0,psc (x̆) ,psc (y̆) ,psc (x̆)+psc (y̆)) resulting in the following cases:
Case 1. (0,0,0,0)
If psc (x̆) = psc (y̆) = 0 then by number theory psc (x̆) + psc (y̆) = 0 . The colouring pattern
(0,0,0,0) satisfies the above property and is a valid colouring pattern. This colouring pattern is
called monochromatic.
Case 2. (0,0,0,1)
If psc (x̆) = psc (y̆) = 0 then by number theory psc (x̆)+psc (y̆) = 0 . The colouring pattern (0,0,0,1)
violates the above property and is a forbidden colouring pattern.
Case 3. (0,0,1,0)
If psc (x̆) = 0 and psc (y̆) = 1 then by number theory psc (x̆) + psc (y̆) = 1 . The colouring pattern
(0,0,1,0) violates the above property and is a forbidden colouring pattern.
Case 4. (0,0,1,1)
If psc (x̆) = 0 and psc (y̆) = 1 then by number theory psc (x̆) + psc (y̆) = 1 . The colouring pattern
(0,0,1,1) satisfies the above property and is a valid colouring pattern. This colouring pattern is
called two-coloured of pattern 2+2.
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Case 5. (0,1,0,0)
If psc (x̆) = 1 and psc (y̆) = 0 then by number theory psc (x̆) + psc (y̆) = 1 . The colouring pattern
(0,1,0,0) violates the above property and is a forbidden colouring pattern.
Case 6. (0,1,0,1)
If psc (x̆) = 1 and psc (y̆) = 0 then by number theory psc (x̆) + psc (y̆) = 1 . The colouring pattern
(0,1,0,1) satisfies the above property and is a valid colouring pattern. This colouring pattern is
called mixed two-coloured.
Case 7. (0,1,1,0)
If psc (x̆) = 1 and psc (y̆) = 1 then by number theory psc (x̆) + psc (y̆) = 0 . The colouring pattern
(0,1,1,0) satisfies the above property and is a valid colouring pattern. This colouring pattern is
called two-coloured of pattern 1+2+1.
Case 8. (0,1,1,1)
If psc (x̆) = 1 and psc (y̆) = 1 then by number theory psc (x̆) + psc (y̆) = 0 . The colouring pattern
(0,1,1,1) violates the above property and is a forbidden colouring pattern.

We obtain as valid colouring patterns: (0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0) .

Corollary 1. If psc (z̆) = 0 then psc (x̆) = psc (y̆) . If psc (z̆) = 1 then psc (x̆) is the opposite of
psc (y̆) .

6. Linear independence and orthogonality between classes of physical quantities

The representation of a class of physical quantities in Z7 gives the means to study the linear
independence and the orthogonality between classes of physical quantities. Consider z̆ = ŏ+ x̆+ y̆
and form the inner product z̆ · y̆ = ŏ · y̆ + x̆ · y̆ + y̆ · y̆ . The classes [x] and [y] are orthogonal when
x̆ · y̆ = 0 . We find z̆ · y̆ = y̆ · y̆ which shows a linear relationship between ‖z̆‖2 and ‖y̆‖2 . So, an
equation [z] = [κ][x][y] in which the classes [x] and [y] are orthogonal expresses a linear relationship
between [z] and [x] or between [z] and [y] . We underline the difference between linearly independent
physical quantities and orthogonal physical quantities [63]. From these properties we define 6 types
of pairwise combinations of [x] and [y] . We give examples of each of the types. Consider the
representation of distance by the lattice point r̆ = (1, 0, 0, 0, 0, 0, 0) and the representation of the
linear momentum by the lattice point p̆ = (1, 1,−1, 0, 0, 0, 0) . We consider the 2× 7 matrix formed
by the coordinates of r̆ and p̆ and obtain the rank = 2 for this matrix which means that r̆ and
p̆ are linearly independent. For the inner product we find r̆ · p̆ = 1 6= 0 and so r̆ and p̆ are not
orthogonal. Consider the product of length and time with representation l̆t = (1, 0, 1, 0, 0, 0, 0) and
energy represented by the lattice point Ĕ = (2, 1,−2, 0, 0, 0, 0), we find that l̆t and Ĕ are linearly
independent and orthogonal. Consider the distance representation r̆ = (1, 0, 0, 0, 0, 0, 0) and the
wave vector representation k̆ = (−1, 0, 0, 0, 0, 0, 0), we find that r̆ and k̆ are linearly dependent
and not orthogonal. Consider the velocity representation v̆ = (1, 0,−1, 0, 0, 0, 0) and the reciprocal
velocity representation v̆r = (−1, 0, 1, 0, 0, 0, 0), we find that v̆ and v̆r are linearly dependent and
orthogonal. We conclude that ternary equations [z] = [κ][x][y] of physical quantities are only one
of the six following cases:

(i) x̆ · y̆ > 0 and 2 × 7 matrix rank = 2 (not orthogonal with positive inner product, linearly
independent)

(ii) x̆ · y̆ = 0 and 2× 7 matrix rank = 2 (orthogonal, linearly independent)
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(iii) x̆ · y̆ < 0 and 2 × 7 matrix rank = 2 (not orthogonal with negative inner product, linearly
independent)

(iv) x̆ · y̆ > 0 and 2 × 7 matrix rank < 2 (not orthogonal with positive inner product, linearly
dependent)

(v) x̆ · y̆ = 0 and 2× 7 matrix rank < 2 (orthogonal, linearly dependent)

(vi) x̆ · y̆ < 0 and 2 × 7 matrix rank < 2 (not orthogonal with negative inner product, linearly
dependent)

6.1. Decompositions of a vertex in pairwise orthogonal vertices
The decomposition of a vertex z̆ in two pairwise orthogonal vertices x̆ and y̆ assumes the existence

of a system of Diophantine equations:

x̆+ y̆ − z̆ = 0 , (8a)

x̆ · y̆ = 0 , (8b)
where x̆, y̆, z̆ ∈ Z7 . We eliminate y̆ from the equation (8b) and find:

x̆ · x̆− x̆ · z̆ = 0 . (9)

We apply the method of “completing the square” and write equation (9) as:

(x̆− z̆

2)2 = ( z̆2)2 , (10)

that represents a seven-dimensional hypersphere with center at z̆2 with radius ‖ z̆2‖2 . We note that
the hyper-surface area of a unit radius hypersphere reaches a maximum in a 7-dimensional space
[64]. The center of the 7-sphere is only a lattice point of Z7 if all the coordinates of z̆ are even. The
solution set of the equation (10) are the integer lattice points incident on the 7-sphere and thus is
a finite set. It is obvious that a bijection exists between the physical quantity having the vertex z̆
and the 7-sphere with equation (10). A closed form for the solution set is not known to the author.
We use the brute force method and list the vertices of 524287 parallelograms ŏx̆z̆y̆ embedded in
Z7 representing equations [z] = [κ][x][y] . From this listing, we find parallelograms that have the
property of being a rectangle. Let nd = # (Od) represent the cardinality of the set of pairwise
orthogonal vertices in Zd × {0}7−d with dimension d ∈ N where 2 ≤ d ≤ 7 . Table ?? contains the
cardinalities of the commonly known leader classes.
Example 6.1. We solve the equation (10) for the leader class [22104], that represents the class
energy. Table ?? enumerates the 60 pairs of orthogonal vertices of Z7 resulting in the vertex
Ĕ = z̆ = (2, 1,−2, 0, 0, 0, 0) . The orthogonality analysis of the 524287 parallelograms spans a
range of perimeters from pp = 6 to pp = 23, 832 . Table 8 lists the 4 pairs having in column 1 the
respective indices 1, 26, 35 and 36 that are embedded in Z3 × {0}4 . We find that the rectangles
in the 7-sphere have the perimeter values 7, 657 8, 363 and 8, 472 . The perimeter distribution
indicates that the frequency of the rectangle perimeters is respectively 1, 17 and 26. Column 5 of
Table 8 gives the 2× 7 matrix rank. We observe that the 4 orthogonal pairs have rank 2 and thus
are linearly independent. We find that the pair with index Id = 1 is the only rectangle having also
frequency 1. This rectangle emphasizes the uniqueness of the form E = β1mv

2 that is best known
as the equation E = γm0c

2 .
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Figure 6: Rectangles embedded in Z3 × {0}4 representing ternary equations of energy

Table 8: Equations of orthogonal lattice points for energy in Z3 ×{0}4 .

Id pp x̆ y̆ 2× 7 matrix rank Form Proposal

1 7,657 (0,1,0,0,0,0,0) (2,0,-2,0,0,0,0) 2 E = β1mv
2 E = γm0c

2

26 8,363 (1,-1,-1,0,0,0,0) (1,2,-1,0,0,0,0) 2 E = β2
v

m

p2

v
E = γ2

p2

2m
35 8,472 (2,1,0,0,0,0,0) (0,0,-2,0,0,0,0) 2 E = β3mAν

2 E = β3mx
2ω2

36 8,472 (0,1,-2,0,0,0,0) (2,0,0,0,0,0,0) 2 E = β4A
m

t2
E = β4A

∂2m

∂t2

The 4 rectangles representing ternary energy equations in Z3 × {0}4 are shown in (Fig. 6).

7. Future work and conclusion

We construct the mathematical foundation for the discrete geometry of physical quantities . We
prove that ternary operations between components of physical quantities are equivalent to a paral-
lelogram in the integer lattice Z7 . This equivalence is the basis for a computer search for relations
between physical quantities based on geometric properties between the integer lattice points of
Z7, which are the representatives of components of physical quantities. We develop an algorithm
that creates a listing of the equations of the type [z] = [κ][x][y] where [κ], [x], [y], [z] represents
components of physical quantities. We find that ternary relations between physical quantities are
classified in 4 distinct 2-colouring patterns of Z7 . Application of the algorithm for the case where
[z] is representing the class energy , results in a discrete value distribution that is characteristic for
the leader class [22104] . The analysis of the discrete value distribution for the physical quantity
energy indicates the existence of unique constellations between physical quantities. We discover
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that the unique constellations representing energy are all embedded in a hyperplane of the inte-
ger lattice Z7 . We observed that the frequency of some constellations is not depending on the
dimension d of the integer lattice. The algorithm that was applied for energy and also for force
is applicable to any other component of a physical quantity resulting in the discovery of new con-
stellations between physical quantities. The compilation of the listings generated by the algorithm,
will result in a catalog of equations of the type [z] = [κ][x][y] . The equivalence relation z1 has
the same isoperimetric distribution as z2 applied on a finite set, representing a measure polytope
of Z7, results in the classification of physical quantities. We show that morphisms exists between
these equivalence classes and monomials. Assignment of a Gödel number to each physical quantity
in Z7

+ reveals the existence of a unique Gödel walk in Zk+ . A scheme is described for analyzing
n-ary operations based on the factorization of the Gödel number of leader class representatives in
distinct integer factors, that will allow the exploration of more complex constellations than paral-
lelograms. The n-ary operations between physical quantities are representing paths connecting the
lattice points of the constellation representing the physical quantity under study. Orthogonality
and linear independence properties of the pairs of vertices x̆ and y̆ result in classifying the ternary
equations [z] = [κ][x][y] in 6 distinct types. We find that each vertex z̆ can be decomposed in a
finite number of pairwise orthogonal vertices incident on a unique 7-sphere. The discrete geometry
of physical quantities provides inherently a predictive property for finding the form of equations
between physical quantities that are yet to be discovered. This research shows that our knowledge
about the components of physical quantities and about their constellations is far from being un-
derstood and that large hypervolumes of Z7, are still to be explored. The appendices contain a
preliminary classification of common physical quantities based on the measure polytopes P s7 . The
appendices also contain numerical data useful as starting point for the further exploration of the
discrete geometry of physical quantities.
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Appendix A. 3-cycle isoperimetric distribution algorithm

Algorithm. Calculate for each integer lattice point x̆ of a 7-dimensional lattice the following:

(i) d(ŏ, z̆), the Euclidean distance from ŏ to the lattice point z̆, representing a component of a
physical quantity with coordinates (Z1, . . . , Z7) ,

(ii) d(x̆, ŏ) , the Euclidean distance from x̆ to the origin ŏ ,

(iii) the cosine of the angle between x̆ and z̆ ,

(iv) 2a = d(z̆, x̆) + d(x̆, ŏ) , that is a characteristic of an ellipse,

(v) the perimeter of the 3-cycle pt = d(ŏ, z̆) + d(z̆, x̆) + d(x̆, ŏ) ,
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(vi) store these results in a data structure allowing sorting by perimeter,

(vii) query the data structure to obtain the number of lattice points x̆ generating the same triangle
perimeter,

(viii) find for each triangle perimeter pt the number of points corresponding to this triangle perimeter
and record the discrete value distribution,

(ix) select the set of vertices having the same perimeter starting with the shortest 3-cycle perimeter,

(x) calculate for each of these vertices the complementary vertices and write them in adjacent
rows creating a listing of increasing perimeter.

Appendix B. Algorithm for finding all the n-ary operations of a physical quantity

Algorithm. Execute the following steps:

(i) Identify to which class the physical quantity belongs;

(ii) apply the function ”dex” on the class of the physical quantity and identify the lattice point z̆,
representing a component of a physical quantity with coordinates (Z1, . . . , Z7) ;

(iii) associate to the coordinates (Z1, . . . , Z7) its leader class representative;

(iv) calculate using the function φ7() the Gödel number;

(v) if the Gödel number is ≤ 1500 then;

(vi) open lookup table OEIS A045778 and identify the row correponding to the Gödel number and
record the correponding factorization;

(vii) else

(viii) perform the factorization of the Gödel number in distinct integer factors;

(ix) calculate using the inverse Gödel encoding the additive partitions of the leader class represen-
tative;

(x) apply the appropriate signed permutation to transform the leader class representative in the
physical quantity under investigation;

(xi) generate a table of forms of equations for the physical quantity under study.

Appendix C. Measure polytopes

The enumeration table (Table C.9) of measure polytopes P 4
7 consists of 8 columns. The second

column is the row identifier. The third column gives the representative of the leader class. The
fourth column contains the sum of the absolute value of the coordinates of the lattice points being
elements of the leader class that is exclusively the total degree of the monomial associated with
the leader class. The fifth column gives the parity of the representative of the leader class. The
sixth column gives the `1-norm of the representative. The seventh column gives the cardinality of

26



the leader class. The eighth column gives the Gödel number of the representative. Observe that
for ‖x̆‖∞ = 1 the representative lattice points of the leader classes generate the successive minima
Ri of the lattice Z7 [69] . The successive minima Ri are given in the column 6 and correspond to
the values of N(z̆), the norm of the lattice point and thus the representative lattice points of the
leader classes for s = 1 form a set of minimal points of the lattice Z7 [69]. Observe that the leader
class [22104] contains 840 integer lattice points with the same geometrical properties as the physical
quantity energy. The 7×7 signed permutation matrix P21−2,221 transforms all energy constellations
to the leader class [22104]:

P21−2,221 =



1 0 0 0 0 0 0
0 0 −1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(C.1)

The representative of the leader class [22104] is a physical quantity that could be expressed as an
integral of the form

∫
κ(λm0)2dt . This is the time integral of the square of the quantity with lattice

point (1,1,0,0,0,0,0).

Table C.9: Partitions of the measure polytope P 4
7

‖x̆‖∞ = s Id leader class deg psc (z̆) N(z̆) Number of vertices Gödel number

0 1 [07] 0 0 0 1 1
1 1 [106] 1 1 1 14 2
1 2 [1205] 2 0 2 84 6
1 3 [1304] 3 1 3 280 30
1 4 [1403] 4 0 4 560 210
1 5 [1502] 5 1 5 672 2310
1 6 [160] 6 0 6 448 30030
1 7 [17] 7 1 7 128 510510
2 1 [206] 2 0 4 14 4
2 2 [2105] 3 1 5 168 12
2 3 [21204] 4 0 6 840 60
2 4 [2205] 4 0 8 84 36
2 5 [21303] 5 1 7 2240 420
2 6 [22104] 5 1 9 840 180
2 7 [21402] 6 0 8 3360 4620
2 8 [221203] 6 0 10 3360 1260
2 9 [2304] 6 0 12 280 900
2 10 [2150] 7 1 9 2688 60060
2 11 [221302] 7 1 11 6720 13860
2 12 [23103] 7 1 13 2240 6300
2 13 [216] 8 0 10 896 1021020
2 14 [22140] 8 0 12 6720 180180
2 15 [231202] 8 0 14 6720 69300
2 16 [2403] 8 0 16 560 44100

. . . . . . . . . . . . . . . . . . . . . . . .
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‖x̆‖∞ = s Id leader class deg psc (z̆) N(z̆) Number of vertices Gödel number

2 17 [2215] 9 1 13 2688 3063060
2 18 [23130] 9 1 15 8960 900900
2 19 [24102] 9 1 17 3360 485100
2 20 [2314] 10 0 16 4480 15315300
2 21 [24120] 10 0 18 6720 6306300
2 22 [2502] 10 0 20 672 5336100
2 23 [2413] 11 1 19 4480 107207100
2 24 [2510] 11 1 21 2688 69369300
2 25 [2512] 12 0 22 2688 1179278100
2 26 [260] 12 0 24 448 901800900
2 27 [261] 13 1 25 896 15330615300
2 28 [27] 14 0 28 128 260620460100
3 1 [306] 3 1 9 14 8
3 2 [3105] 4 0 10 168 24
3 3 [31204] 5 1 11 840 120
3 4 [3205] 5 1 13 168 72
3 5 [31303] 6 0 12 2240 840
3 6 [32104] 6 0 14 1680 360
3 7 [3205] 6 0 18 84 216
3 8 [31402] 7 1 13 3360 9240
3 9 [321203] 7 1 15 6720 2520
3 10 [32204] 7 1 17 840 1800
3 11 [32104] 7 1 19 840 1080
3 12 [3150] 8 0 14 2688 120120
3 13 [321302] 8 0 16 13440 27720
3 14 [322103] 8 0 18 6720 12600
3 15 [321203] 8 0 20 3360 7560
3 16 [32204] 8 0 22 840 5400
3 17 [316] 9 1 15 896 2042040
3 18 [32140] 9 1 17 13440 360360
3 19 [3221202] 9 1 19 20160 138600
3 20 [32303] 9 1 21 2240 88200
3 21 [321302] 9 1 21 6720 83160
3 22 [322103] 9 1 23 6720 37800
3 23 [3304] 9 1 27 280 27000
3 24 [3215] 10 0 18 5376 6126120
3 25 [322130] 10 0 20 26880 1801800
3 26 [323102] 10 0 22 13440 970200
3 27 [32140] 10 0 22 6720 1081080
3 28 [3221202] 10 0 24 20160 415800
3 29 [322203] 10 0 26 3360 264600
3 30 [33103] 10 0 28 2240 189000
3 31 [32214] 11 1 21 13440 30630600
3 32 [323120] 11 1 23 26880 12612600
3 33 [32402] 11 1 25 3360 10672200
3 34 [3215] 11 1 23 2688 18378360
3 35 [322130] 11 1 25 26880 5405400

. . . . . . . . . . . . . . . . . . . . . . . .
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‖x̆‖∞ = s Id leader class deg psc (z̆) N(z̆) Number of vertices Gödel number

3 36 [3222102] 11 1 27 20160 2910600
3 37 [331202] 11 1 29 6720 2079000
3 38 [33203] 11 1 31 2240 1323000
3 39 [32313] 12 0 24 17920 214414200
3 40 [32410] 12 0 26 13440 138738600
3 41 [32214] 12 0 26 13440 91891800
3 42 [3222120] 12 0 28 40320 37837800
3 43 [322302] 12 0 30 6720 32016600
3 44 [33130] 12 0 30 8960 27027000
3 45 [332102] 12 0 32 13440 14553000
3 46 [3403] 12 0 36 560 9261000
3 47 [32412] 13 1 27 13440 2358556200
3 48 [3250] 13 1 29 2688 1803601800
3 49 [322213] 13 1 29 26880 643242600
3 50 [322310] 13 1 31 26880 416215800
3 51 [3314] 13 1 31 4480 459459000
3 52 [332120] 13 1 33 26880 189189000
3 53 [332202] 13 1 35 6720 160083000
3 54 [34102] 13 1 37 3360 101871000
3 55 [3251] 14 0 30 5376 30661260600
3 56 [322312] 14 0 32 26880 7075668600
3 57 [32240] 14 0 34 6720 5410805400
3 58 [33213] 14 0 34 17920 3216213000
3 59 [332210] 14 0 36 26880 2081079000
3 60 [34120] 14 0 38 6720 1324323000
3 61 [34202] 14 0 40 3360 1120581000
3 62 [326] 15 1 33 896 521240920200
3 63 [32241] 15 1 35 13440 91983691800
3 64 [332212] 15 1 37 26880 35378343000
3 65 [33230] 15 1 39 8960 27054027000
3 66 [3413] 15 1 39 4480 22513491000
3 67 [34210] 15 1 41 13440 14567553000
3 68 [3502] 15 1 45 672 12326391000
3 69 [3225] 16 0 38 2688 1563722760600
3 70 [33231] 16 0 40 17920 459918459000
3 71 [34212] 16 0 42 13440 247648401000
3 72 [34220] 16 0 44 6720 189378189000
3 73 [3510] 16 0 46 2688 160243083000
3 74 [3324] 17 1 43 4480 7818613803000
3 75 [34221] 17 1 45 13440 3219429213000
3 76 [3512] 17 1 47 2688 2724132411000
3 77 [3520] 17 1 49 2688 2083160079000
3 78 [3423] 18 0 48 4480 54730296621000
3 79 [3521] 18 0 50 5376 35413721343000
3 80 [360] 18 0 54 448 27081081027000
3 81 [3522] 19 1 53 2688 602033262831000
3 82 [361] 19 1 55 896 460378377459000

. . . . . . . . . . . . . . . . . . . . . . . .
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‖x̆‖∞ = s Id leader class deg psc (z̆) N(z̆) Number of vertices Gödel number

3 83 [362] 20 0 58 896 7826432416803000
3 84 [37] 21 1 63 128 133049351085651000

Appendix D. Relation between 7-spheres and the leader classes of measure polytopes

Table D.10: Partitioning 7-spheres in leader classes of measure polytopes

N disjunct union of leader classes of measure polytopes r7(N)

0 [07] 1
1 [106] 14
2 [1205] 84
3 [1304] 280
4 [1403] ∪ [206] 574
5 [1502] ∪ [2105] 840
6 [160] ∪ [21204] 1288
7 [17] ∪ [21303] 2368
8 [2205] ∪ [21402] 3444
9 [22104] ∪ [2150] ∪ [306] 3542
10 [221203] ∪ [216] ∪ [3105] 4424
11 [221302] ∪ [31204] 7560
12 [2304] ∪ [22140] ∪ [31303] 9240
13 [23103] ∪ [2215] ∪ [3205] ∪ [31402] 8456
14 [231202] ∪ [32104] ∪ [3150] 11088
15 [23130] ∪ [321203] ∪ [316] 16576
16 [2403] ∪ [2314] ∪ [321302] ∪ [406] 18494
17 [24102] ∪ [32204] ∪ [32140] ∪ [4105] 17808
18 [24120] ∪ [3205] ∪ [322103] ∪ [3215] ∪ [41204] 19740
19 [2413] ∪ [32104] ∪ [3221202] ∪ [41303] 27720
20 [2502] ∪ [321203] ∪ [322130] ∪ [41402] ∪ [4205] 34440
21 [2510] ∪ [32303] ∪ [321302] ∪ [32214] ∪ [4150] ∪ [42104] 29456
22 [2512] ∪ [32204] ∪ [323102] ∪ [32140] ∪ [416] ∪ [421203] 31304
23 [322103] ∪ [323120] ∪ [3215] ∪ [421302] 49728
24 [260] ∪ [3221202] ∪ [32313] ∪ [42140] ∪ [42204] 52808
25 [261] ∪ [32402] ∪ [322130] ∪ [4215] ∪ [422103] ∪ [4305] ∪ [506] 43414
26 [322203] ∪ [32410] ∪ [32214] ∪ [4221202] ∪ [43104] ∪ [5105] 52248
27 [3304] ∪ [3222102] ∪ [32412] ∪ [422130] ∪ [431203] ∪ [51204] 68320
28 [27] ∪ [33103] ∪ [3222120] ∪ [42214] ∪ [42303] ∪ [431302] ∪ [51303] 74048
29 [331202] ∪ [3250] ∪ [322213] ∪ [423102] ∪ [43140] ∪ [43204] ∪ [51402] ∪ [5205] 68376
30 [322302] ∪ [33130] ∪ [3251] ∪ [423120] ∪ [4315] ∪ [432103] ∪ [5150] ∪ [52104] 71120
31 [33203] ∪ [322310] ∪ [3314] ∪ [42313] ∪ [4321202] ∪ [516] ∪ [521203] 99456
32 [332102] ∪ [322312] ∪ [42402] ∪ [4205] ∪ [432130] ∪ [521302] 110964
33 [332120] ∪ [326] ∪ [42410] ∪ [42104] ∪ [43214] ∪ [432203] ∪ [52140] ∪ [52204] 89936
34 [32240] ∪ [33213] ∪ [42412] ∪ [4322102] ∪ [43204] ∪ [421203] ∪ [5215] ∪ [522103] ∪ [5305] 94864
35 [332202] ∪ [32241] ∪ [432103] ∪ [421302] ∪ [4322120] ∪ [5221202] ∪ [53104] 136080
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Appendix E. Isoperimetric distributions of classes of the first polytope shell

Table E.11 consists of 8 columns and represents the isoperimetric distributions of leader classes
of polytope shell P 1

7 \P 0
7 . The first column is the index of the integer sequence of frequencies of the

respective isoperimetric distributions. The other columns contain each the first 50 frequencies of the
isoperimetric distribution corresponding to the leader classes containing known physical quantities
from the measure polytope P 1

7 . Study of the minimum frequencies fmin in the 7 distributions and
the corresponding vertices results in finding the classes that have unique ternary operations. The
results for the measure polytope P 1

7 are that only leader class 2 contains unique parallelograms.
The ternary operation for leader class 2 is represented by a physical quantity that is expressed as
length ×mass . Observe that the frequencies in the sequence of leader class 1 also appear in the
OEIS [40] sequence A000141 given by r6(m) = 1, 12, 60, 160, 252, 312, 544, 960 . . . . The sequence
represents the number of ways of writing a positive integer m as a sum of six integral squares. It
is known that this OEIS sequence A000141 is related to the theta function [56].

Table E.11: Truncated (n ≤ 50) integer sequences of the frequencies of
the isoperimetric distributions of leader classes of the measure polytope
P 1

7 \ P 0
7 .

n cl1 cl2 cl3 cl4 cl5 cl6 cl7

1 1 1 1 1 1 1 1
2 12 1 3 4 5 6 7
3 1 10 8 3 10 15 21
4 60 10 24 6 4 10 35
5 12 2 3 24 20 2 7
6 160 42 30 18 40 12 42
7 60 40 75 4 5 30 105
8 252 20 24 24 24 26 147
9 160 100 80 60 50 30 147

10 312 80 120 40 65 60 21
11 1 1 3 24 20 66 105
12 252 80 75 80 80 30 210
13 544 170 168 104 120 12 252
14 12 91 150 48 100 60 315
15 312 10 24 6 10 120 441
16 960 160 120 60 50 15 35
17 60 272 240 156 114 132 147
18 544 122 288 180 170 60 252
19 1020 42 1 78 200 60 350
20 160 182 75 36 40 92 595
21 960 420 150 104 120 102 735
22 876 280 246 156 128 165 574
23 252 100 504 264 160 110 35
24 1020 244 8 176 10 30 147
25 1560 544 120 4 320 120 315
26 312 400 288 80 65 180 595
27 876 2 400 180 170 20 882
28 2400 170 528 192 260 180 840
29 1 560 30 328 320 270 854

. . . . . . . . . . . . . . . . . . . . . . . .
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n cl1 cl2 cl3 cl4 cl5 cl6 cl7

30 544 682 150 240 375 180 1260
31 1560 290 504 24 40 66 21
32 2080 20 750 96 100 102 147
33 12 272 510 264 160 200 441
34 960 800 80 480 400 360 735
35 2400 910 288 480 5 342 840
36 2040 362 528 193 560 166 1050
37 60 80 728 60 340 132 1575
38 1020 420 840 156 65 180 1785
39 2080 580 3 328 200 15 1470
40 3264 1040 168 636 320 280 7
41 160 800 504 624 424 480 147
42 876 160 510 219 520 420 441
43 2040 544 576 6 20 132 574
44 4160 724 1227 104 530 60 854
45 252 1220 24 352 100 165 1575
46 1560 880 240 480 320 360 1750
47 3264 1 528 438 560 450 1533
48 4092 182 840 680 1 30 1932
49 312 682 1200 468 484 390 2387
50 2400 1600 1200 24 500 570 1

Appendix F. Isoperimetric distributions of leader classes of the second polytope shell

Table F.12 consists of 11 columns and represents the isoperimetric distributions of leader classes
of polytope shell P 2

7 \ P 1
7 . The first column is the index of the integer sequence of frequencies of

the respective isoperimetric distributions. The other columns contain each the first 50 frequencies
of the isoperimetric distribution corresponding to the leader classes with s = 2 and respective Id
from the measure polytope P 3

7 . Observe that minimum frequencies fmin = 1 are present in the
distributions. Listing the vertices that correspond to those frequency minima results in finding the
leader classes that have unique ternary operations. The leader class with s = 2 and Id = 6 (see
C.9) has been studied in detail.

Table F.12: Truncated (n ≤ 50) integer sequences of the frequencies
of the isoperimetric distributions of leader classes of the polytope shell
P 2

7 \ P 1
7 .

n cl1 cl2 cl3 cl4 cl5 cl6 cl7 cl8 cl11 cl12

1 1 1 1 2 1 1 1 1 1 1
2 6 1 1 2 1 1 1 1 1 1
3 12 1 1 5 3 2 4 1 3 3
4 30 10 2 20 3 2 3 2 2 3
5 60 10 9 31 9 8 4 4 6 3
6 81 11 8 80 19 1 10 8 3 6
7 160 40 8 50 6 16 20 8 10 3
8 126 1 18 42 21 8 17 13 14 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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n cl1 cl2 cl3 cl4 cl5 cl6 cl7 cl8 cl11 cl12

9 12 40 34 2 3 17 20 6 11 18
10 252 1 26 160 36 26 4 26 4 19
11 156 50 26 85 45 10 40 28 28 18
12 60 81 1 100 18 1 44 14 36 18
13 312 11 64 20 1 48 20 16 29 6
14 272 80 74 182 57 56 16 2 18 21
15 160 120 34 136 83 50 1 34 3 40
16 544 100 18 170 63 26 44 60 32 9
17 480 10 50 80 21 2 80 2 48 45
18 252 50 112 244 50 42 20 16 12 47
19 960 90 9 211 82 65 80 60 62 39
20 511 1 120 272 9 10 32 24 62 3
21 312 170 41 560 120 90 60 52 45 18
22 1020 152 64 432 122 88 10 16 18 57
23 438 40 2 10 57 48 80 57 72 45
24 12 120 88 420 3 16 91 62 57 60
25 544 114 114 800 114 96 140 98 75 36
26 876 202 185 341 108 58 88 55 44 96
27 780 10 104 182 135 98 44 36 132 9
28 60 320 34 42 36 42 4 13 11 43
29 960 81 112 544 249 160 106 88 68 81
30 1560 170 164 580 82 2 140 100 106 44
31 1200 260 16 455 150 72 40 52 45 78
32 160 352 164 244 19 136 122 84 134 18
33 1020 411 264 100 210 48 184 144 6 104
34 2400 40 184 682 219 139 130 98 140 111
35 1040 100 74 724 276 1 80 82 160 83
36 252 202 114 520 83 184 96 94 96 36
37 876 400 1 560 3 208 20 34 32 66
38 2080 1 240 910 108 96 184 1 93 3
39 1020 560 368 170 150 17 280 166 1 102
40 312 322 330 1600 339 116 244 234 105 172
41 1560 81 194 610 45 162 176 201 228 78
42 2040 152 120 2 399 296 6 170 68 210
43 1632 352 164 800 246 65 140 26 251 108
44 544 360 9 1040 120 352 160 136 147 39
45 2400 520 304 272 210 212 44 128 28 3
46 3264 11 480 272 19 8 244 57 116 120
47 2081 530 427 1760 300 136 400 212 162 153
48 960 100 160 850 366 176 364 324 72 83
49 2080 320 68 20 435 56 128 8 194 192
50 4160 560 185 580 63 256 91 262 10 21

Appendix G. Isoperimetric distributions of leader classes of the third polytope shell

Table G.13 consists of 11 columns and represents the isoperimetric distributions of leader classes
of polytope shell P 3

7 \ P 2
7 . The first column is the index of the integer sequence of frequencies of
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the respective isoperimetric distributions. The other columns contain each the first 50 frequencies
of the isoperimetric distribution corresponding to the leader classes with s = 3 and respective Id
from the measure polytope P 3

7 . Observe that minimum frequencies fmin = 1 are present in the
distributions. Listing the vertices that correspond to those frequency minima results in finding the
leader classes that have unique ternary operations.

Table G.13: Truncated (n ≤ 50) integer sequences of the frequencies
of the isoperimetric distributions of leader classes of the polytope shell
P 3

7 \ P 2
7 .

n cl1 cl2 cl3 cl4 cl5 cl6 cl9 cl14 cl15 cl22

1 2 1 1 1 1 1 1 1 1 1
2 12 1 1 1 1 1 1 1 1 1
3 12 1 2 1 3 1 1 1 2 1
4 60 10 1 1 3 1 2 2 1 1
5 160 10 8 10 1 1 1 1 2 2
6 60 1 2 1 6 1 2 2 2 1
7 1 1 16 10 3 8 1 6 2 2
8 252 10 8 40 18 9 7 2 6 2
9 160 40 3 10 18 1 13 2 4 6

10 312 40 8 10 6 9 9 8 12 8
11 12 1 26 10 6 1 8 2 6 3
12 252 10 48 40 6 9 2 13 12 1
13 544 10 28 1 19 24 15 1 12 8
14 60 10 16 1 39 8 26 8 4 13
15 312 80 2 80 3 9 9 14 2 13
16 960 40 24 40 18 32 30 15 12 2
17 544 80 48 40 42 9 34 26 16 7
18 160 10 26 1 18 32 26 13 28 1
19 1020 40 64 40 36 1 2 14 6 14
20 960 1 64 80 18 10 15 6 24 13
21 252 10 49 11 50 33 43 13 20 26
22 876 41 1 90 42 35 38 30 30 13
23 1020 90 16 1 60 57 35 38 29 21
24 1 90 74 10 44 32 1 1 24 30
25 312 40 74 80 42 33 34 27 2 26
26 1560 80 51 1 1 1 70 32 32 6
27 876 1 48 80 18 24 14 46 28 15
28 12 80 120 90 78 56 46 40 12 22
29 544 90 3 80 96 66 1 40 40 8
30 2400 40 72 50 44 1 61 2 56 25
31 1560 112 112 10 66 40 43 32 52 1
32 2080 112 49 112 99 25 78 32 65 45
33 960 90 128 90 84 25 15 14 30 31
34 60 90 8 40 60 64 66 57 16 56
35 2400 91 120 10 84 66 90 80 56 33
36 2040 10 176 90 42 65 70 60 62 30
37 1020 1 72 10 6 57 26 82 2 9
38 160 130 24 112 116 34 62 39 40 44

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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n cl1 cl2 cl3 cl4 cl5 cl6 cl7 cl8 cl11 cl12

39 2080 240 76 120 168 9 9 10 64 1
40 3264 241 2 90 174 96 71 68 106 50
41 876 170 122 240 152 128 143 50 12 43
42 252 40 192 113 36 97 61 44 30 62
43 2040 112 72 40 3 136 164 84 90 14
44 4160 122 267 81 99 40 103 132 17 28
45 1560 41 194 112 120 9 43 13 38 52
46 312 192 26 40 60 88 8 24 80 75
47 3264 320 112 240 145 83 90 92 64 2
48 4092 10 160 1 240 40 108 40 5 39
49 2400 330 74 40 19 152 66 60 104 53
50 544 112 224 170 225 216 146 100 32 48
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