213 research outputs found

    From the Guest Editors: Special issue dedicated to Carlos Castillo-Chavez on his 60th birthday

    Get PDF
    Carlos Castilo-Chavez is a Regents Professor, a Joaquin Bustoz Jr. Professor of Mathematical Biology, and a Distinguished Sustainability Scientist at Arizona State University. His research program is at the interface of the mathematical and natural and social sciences with emphasis on (i) the role of dynamic social landscapes on disease dispersal; (ii) the role of environmental and social structures on the dynamics of addiction and disease evolution, and (iii) Dynamics of complex systems at the interphase of ecology, epidemiology and the social sciences. Castillo-Chavez has co-authored over two hundred publications (see goggle scholar citations) that include journal articles and edited research volumes. Specifically, he co-authored a textbook in Mathematical Biology in 2001 (second edition in 2012); a volume (with Harvey Thomas Banks) on the use of mathematical models in homeland security published in SIAM\u27s Frontiers in Applied Mathematics Series (2003); and co-edited volumes in the Series Contemporary Mathematics entitled ``Mathematical Studies on Human Disease Dynamics: Emerging Paradigms and Challenges\u27\u27 (American Mathematical Society, 2006) and Mathematical and Statistical Estimation Approaches in Epidemiology (Springer-Verlag, 2009) highlighting his interests in the applications of mathematics in emerging and re-emerging diseases. Castillo-Chavez is a member of the Santa Fe Institute\u27s external faculty, adjunct professor at Cornell University, and contributor, as a member of the Steering Committee of the ``Committee for the Review of the Evaluation Data on the Effectiveness of NSF-Supported and Commercially Generated Mathematics Curriculum Materials,\u27\u27 to a 2004 NRC report. The CBMS workshop ``Mathematical Epidemiology with Applications\u27\u27 lectures delivered by C. Castillo-Chavez and F. Brauer in 2011 have been published by SIAM in 2013

    Lower Bound for Non-Adaptive Estimation of the Number of Defective Items

    Get PDF
    We prove that to estimate within a constant factor the number of defective items in a non-adaptive randomized group testing algorithm we need at least Omega~(log n) tests. This solves the open problem posed by Damaschke and Sheikh Muhammad in [Peter Damaschke and Azam Sheikh Muhammad, 2010; Peter Damaschke and Azam Sheikh Muhammad, 2010]

    On Maximum Weight Clique Algorithms, and How They Are Evaluated

    Get PDF
    Maximum weight clique and maximum weight independent set solvers are often benchmarked using maximum clique problem instances, with weights allocated to vertices by taking the vertex number mod 200 plus 1. For constraint programming approaches, this rule has clear implications, favouring weight-based rather than degree-based heuristics. We show that similar implications hold for dedicated algorithms, and that additionally, weight distributions affect whether certain inference rules are cost-effective. We look at other families of benchmark instances for the maximum weight clique problem, coming from winner determination problems, graph colouring, and error-correcting codes, and introduce two new families of instances, based upon kidney exchange and the Research Excellence Framework. In each case the weights carry much more interesting structure, and do not in any way resemble the 200 rule. We make these instances available in the hopes of improving the quality of future experiments

    Applications of Temporal Graph Metrics to Real-World Networks

    Get PDF
    Real world networks exhibit rich temporal information: friends are added and removed over time in online social networks; the seasons dictate the predator-prey relationship in food webs; and the propagation of a virus depends on the network of human contacts throughout the day. Recent studies have demonstrated that static network analysis is perhaps unsuitable in the study of real world network since static paths ignore time order, which, in turn, results in static shortest paths overestimating available links and underestimating their true corresponding lengths. Temporal extensions to centrality and efficiency metrics based on temporal shortest paths have also been proposed. Firstly, we analyse the roles of key individuals of a corporate network ranked according to temporal centrality within the context of a bankruptcy scandal; secondly, we present how such temporal metrics can be used to study the robustness of temporal networks in presence of random errors and intelligent attacks; thirdly, we study containment schemes for mobile phone malware which can spread via short range radio, similar to biological viruses; finally, we study how the temporal network structure of human interactions can be exploited to effectively immunise human populations. Through these applications we demonstrate that temporal metrics provide a more accurate and effective analysis of real-world networks compared to their static counterparts.Comment: 25 page

    Prediction of survival with alternative modeling techniques using pseudo values

    Get PDF
    Background: The use of alternative modeling techniques for predicting patient survival is complicated by the fact that some alternative techniques cannot readily deal with censoring, which is essential for analyzing survival data. In the current study, we aimed to demonstrate that pseudo values enable statistically appropriate analyses of survival outcomes when used in seven alternative modeling techniques. Methods: In this case study, we analyzed survival of 1282 Dutch patients with newly diagnosed Head and Neck Squamous Cell Carcinoma (HNSCC) with conventional Kaplan-Meier and Cox regression analysis. We subsequently calculated pseudo values to reflect the individual survival patterns. We used these pseudo values to compare recursive partitioning (RPART), neural nets (NNET), logistic regression (LR) general linear models (GLM) and three variants of support vector machines (SVM) with respect to dichotomous 60-month survival, and continuous pseudo values at 60 months or estimated survival time. We used the area under the ROC curve (AUC) and the root of the mean squared error (RMSE) to compare the performance of these models using bootstrap validation. Results: Of a total of 1282 patients, 986 patients died during a median follow-up of 66 months (60-month survival: 52% [95% CI: 50%-55%]). The L

    Optimal Randomized Group Testing Algorithm to Determine the Number of Defectives

    Get PDF
    We study the problem of determining the exact number of defective items in an adaptive group testing by using a minimum number of tests. We improve the existing algorithm and prove a lower bound that shows that the number of tests in our algorithm is optimal up to small additive terms

    CWI-evaluation - Progress Report 1993-1998

    Get PDF

    Math Department Newsletter, 2011

    Get PDF
    • …
    corecore