1,421 research outputs found

    Discrete Gaussian Measures and New Bounds of the Smoothing Parameter for Lattices

    Get PDF
    In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, different approaches are suggested. In the second part of the paper we prove two new bounds for the smoothing parameter of lattices. Under the natural assumption that ε\varepsilon is suitably small, we obtain two estimations of the smoothing parameter: 1. ηε(Z)ln(ε44+2ε)π. \eta_{\varepsilon}(\mathbb{Z}) \le \sqrt{\frac{\ln \big(\frac{\varepsilon}{44}+\frac{2}{\varepsilon}\big)}{\pi}}. 2. For a lattice LRn{\cal L}\subset \mathbb{R}^n of dimension nn, \[ \eta_{\varepsilon}({\cal L}) \le \sqrt{\frac{\ln \big(n-1+\frac{2n}{\varepsilon}\big)}{\pi}}\tilde{bl}({\cal L}). \

    Semantically Secure Lattice Codes for Compound MIMO Channels

    Get PDF
    We consider compound multi-input multi-output (MIMO) wiretap channels where minimal channel state information at the transmitter (CSIT) is assumed. Code construction is given for the special case of isotropic mutual information, which serves as a conservative strategy for general cases. Using the flatness factor for MIMO channels, we propose lattice codes universally achieving the secrecy capacity of compound MIMO wiretap channels up to a constant gap (measured in nats) that is equal to the number of transmit antennas. The proposed approach improves upon existing works on secrecy coding for MIMO wiretap channels from an error probability perspective, and establishes information theoretic security (in fact semantic security). We also give an algebraic construction to reduce the code design complexity, as well as the decoding complexity of the legitimate receiver. Thanks to the algebraic structures of number fields and division algebras, our code construction for compound MIMO wiretap channels can be reduced to that for Gaussian wiretap channels, up to some additional gap to secrecy capacity.Comment: IEEE Trans. Information Theory, to appea

    On the Closest Vector Problem with a Distance Guarantee

    Get PDF
    We present a substantially more efficient variant, both in terms of running time and size of preprocessing advice, of the algorithm by Liu, Lyubashevsky, and Micciancio for solving CVPP (the preprocessing version of the Closest Vector Problem, CVP) with a distance guarantee. For instance, for any α<1/2\alpha < 1/2, our algorithm finds the (unique) closest lattice point for any target point whose distance from the lattice is at most α\alpha times the length of the shortest nonzero lattice vector, requires as preprocessing advice only NO~(nexp(α2n/(12α)2))N \approx \widetilde{O}(n \exp(\alpha^2 n /(1-2\alpha)^2)) vectors, and runs in time O~(nN)\widetilde{O}(nN). As our second main contribution, we present reductions showing that it suffices to solve CVP, both in its plain and preprocessing versions, when the input target point is within some bounded distance of the lattice. The reductions are based on ideas due to Kannan and a recent sparsification technique due to Dadush and Kun. Combining our reductions with the LLM algorithm gives an approximation factor of O(n/logn)O(n/\sqrt{\log n}) for search CVPP, improving on the previous best of O(n1.5)O(n^{1.5}) due to Lagarias, Lenstra, and Schnorr. When combined with our improved algorithm we obtain, somewhat surprisingly, that only O(n) vectors of preprocessing advice are sufficient to solve CVPP with (the only slightly worse) approximation factor of O(n).Comment: An early version of the paper was titled "On Bounded Distance Decoding and the Closest Vector Problem with Preprocessing". Conference on Computational Complexity (2014
    corecore