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Abstract

In this paper, we start with a discussion of discrete Gaussian measures

on lattices. Several results of Banaszczyk are analyzed, different approaches

are suggested. In the second part of the paper we prove two new bounds for

the smoothing parameter of lattices. Under the natural assumption that ε is

suitably small, we obtain two estimations of the smoothing parameter:

1.

ηε(Z) ≤

√
ln
(
ε
44 + 2

ε

)
π

.

2. For a lattice L ⊂ Rn of dimension n,

ηε(L) ≤

√
ln
(
n− 1 + 2n

ε

)
π

b̃l(L).

1 Introduction

An n-dimensional lattice L ⊆ Rn is an additive subgroup of Rn generated by n linearly

independent vectors (a basis) b1, . . . ,bn. This basis is also denoted by the matrix

B whose columns are b1, . . . ,bn and the lattice L is sometimes written in a more

explicit manner:

L(B) =

{
n∑
i=1

xibi : xi ∈ Z

}
.

The lattice L, as a Z-module, has a dual lattice (module) L̂ = Hom(L,Z) which can

be realized precisely by the following set:

L̂ = {y ∈ Rn : 〈x,y〉 ∈ Z, ∀x ∈ L}.
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Computationally infeasible problems like Shortest Vector Problem (SVP) and

Closest Vector Problem (CVP) and their variants in high dimensional lattices are

good bases for setting up cryptosystems using lattices. Lattice-based cryptography

is also believed to resist quantum computer attacks. In introducing random noises

in lattice-based cryptosystems, discrete Gaussian distribution is one of the most im-

portant choices. Given parameters s > 0 and c ∈ Rn, the discrete Gaussian measure

assigns a lattice vector v ∈ L the probability value ρs,c(v)

ρs,c(L) where ρs,c(x) = e−π
‖x−c‖2

s2

and ρs,c(S) =
∑

x∈S ρs,c(x) for any countable set S. In the study of lattices, dual

lattices, and the Gaussian function ρs, Fourier analysis has a great role to play. One

of the useful tools is the classical Poisson formula which gives

ρs,c(L) =
sn

vol(Rn/L)

∑
y∈L̂

e−2πi〈y,c〉ρ 1
s
(y).

A study of discrete Gaussian measures on lattices was initiated by Banaszczyk. In

his seminal work [1, 2], several measure inequalities were proved and new transference

theorems were discovered. His results have been playing important roles in lattice-

based cryptography. In the first part of this paper, we shall discuss some measure

inequalities from [1, 2] by stating improvements and proposing different proofs. We

also establish a relation between the second moments of ρs,c(L) and ρ 1
s
,0(L̂).

In [9], Micciancio and Regev introduced a new numerical parameter for lattices

that is related to discrete Gaussian measures –the smoothing parameter. For an n-

dimensional lattice L, the smoothing parameter is defined with respect to an ε > 0

and given by

ηε(L) = min{s : ρ 1
s
(L̂) ≤ 1 + ε}.

Using the Poisson formula, it has been proved in [9] that the distribution defined on

Rn/L whose density function is d(x) = 1
sn
ρs(L+ (x− c)) is statistically close to the

uniform distribution on Rn/L, if s ≥ ηε(L).

The first non-trivial upper bound for ηε(L) was established by Micciancio and

Regev in [9], denoting λi(L) to be the ith successive minimum, they proved that

ηε(L) ≤

√
ln(2n(1 + 1

ε
))

π
λn(L). (1)

A bound for ηε(L) in terms of dual minimum distance in `∞-norm was given by

Peikert in [11]:

ηε(L) ≤

√
ln(2n(1+ 1

ε
))

π

λ∞1 (L̂)
. (2)

Let B = (b1,b2, · · · ,bn) be a basis of L such that maxj ‖b∗j‖ is smallest (such an

quantity is usually written as b̃l(L)), where {b∗1,b∗2, · · · ,b∗n} is its Gram-Schmidt
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orthogonal basis. It is known that (lemma 7.1 of [8]) there is a basis B of L such that

maxj ‖b∗j‖ ≤ λn(L). Gentry, Peikert, and Vaikuntanathan obtained the first portion

following relation in [7]
1

λ∞1 (L̂)
≤ b̃l(L) ≤ λn(L).

As a result, they gave a new bound on the smoothing parameter relative to the lattice

quantity b̃l(L):

ηε(L) ≤

√
ln
(
2n(1 + 1

ε
)
)

π
b̃l(L). (3)

These mean that the bound (2) is the best one and (3) implies (1).

In a recent work [5], Chung, Dadush, Liu and Peikert initiated a study of the

complexity of approximating the smoothing parameter to within a factor. They

provided two novel and nearly tight characterizations of the magnitude of discrete

Gaussian sums over lattices.

In the second part of the paper, we work on improving the current bounds for

smoothing parameter directly. The goal is to getting closer to the exact value of

the smoothing parameter of a lattice. Under some natural conditions we obtain two

better bounds. The first one is for the case of L = Z. Given ε ≤ ρ1,0(Z)− 1, we have

ηε(Z) ≤

√
ln
(
ε
44

+ 2
ε

)
π

.

Our second result in the second part of the paper is to improve (3) for general n-

dimensional lattice (n ≥ 2) by proving

ηε(L) ≤

√
ln
(
n− 1 + 2n

ε

)
π

b̃l(L).

The paper is organized as follows. We introduce some background materials and

discuss several important results of Banaszczyk in section 2. Section 3 is devoted

to new upper bounds of smoothing parameter of lattices. The last section is the

conclusion.

2 Fourier Transform and Discrete Gaussian Mea-

sures on Lattices

Recall that we used the Gaussian function ρs,c(x) = e−π
‖x−c‖2

s2 to define discrete

Gaussian measure over a lattice L. For any countable set S ⊂ Rn, we denote ρs,c(S) =∑
x∈S ρs,c(x).
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For any vector c ∈ Rn, real s > 0, a discrete Gaussian distribution over L is

defined as:

∀x ∈ L, Ds,c(x) =
ρs,c(x)

ρs,c(L)
.

When s = 1 and/or c = 0, the corresponding subscripts for Ds,c and ρs,c are omitted.

The Fourier transform of a rapidly decreasing smooth function f : Rn → C 1 is

defined to be

f̂(y) =

∫
Rn
f(x)e−2πi〈x,y〉dx.

Several relevant properties of the Fourier transform include

1. If f(x) = g(x + v) for some function g and vector v, then f̂(y) = e2πi〈y,v〉ĝ(y).

2. If f(x) = e2πi〈x,v〉g(x) for some function g and vector v, then f̂(y) = ĝ(y− v).

3. For the Gaussian function ρ, we have ρ̂(y) = ρ(y), ρ̂s(y) = snρ 1
s
(y).

4. For any vector v ∈ Rn, ρ(L+ v) ≤ ρ(L).

The following classical Poisson summation formula has been a useful tool in the

theory of lattice. The proof of this formula can be found in [14].

Lemma 1. For a rapidly decreasing smooth function f and an n-dimensional lattice

L = L(B) ⊂ Rn, ∑
x∈L

f(x) =
1

vol(Rn/L)

∑
y∈L̂

f̂(y),

where vol(Rn/L) = | det(B)| is the volume of the fundamental parallelepiped of L.

In the rest part of this section, we discuss some results of Banaszczyk [1, 2]. The

next two lemmas have been widely used.

Lemma 2 ([1], Lemma 1.5). Let L ⊂ Rn be a lattice. Then for any c > 1√
2π
,

ρ(L \ B
(
0, c
√
n)
)

ρ(L)
<
(
c
√

2πe e−πc
2)n

. (4)

Furthermore, for v ∈ Rn,

ρ
(
(L+ v) \ B(0, c

√
n)
)

ρ(L)
< 2
(
c
√

2πe e−πc
2)n

. (5)

Here B(c, r) denotes the ball in Rn centered at c and with radius r.

1This means that f and all its (partial) derivatives Dβf are rapidly decreasing in the sense that
supx∈Rn |xαDβf(x)| <∞ for every α, β ∈ Nn. Such a function is said to be in the Schwartz space.
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Lemma 3 ([2], Lemma 2.4). Let L ⊂ Rn be a lattice and u ∈ Rn a vector. For any

t ≥ 0, we have ∑
x∈L+u

|xk|≥t

ρ(x) ≤ 2e−πt
2

ρ(L). (6)

The result of this lemma implies

ρ
(
(L+ u) \ tB(∞)

)
< 2ne−πt

2

ρ(L).

where B(∞) is the unit ball of Rn (centered at the origin) in `∞ norm. This fact was

used in [11] to prove the bound (2).

These lemmas were used to prove transference theorem for lattices [1, 2, 4]. Now

they are playing a significant role in applying Gaussian measures in lattice-based

cryptography.

It is remarked that in [17], Tian, Liu, and Xu presented an improvement of lemma

2 with a transparent proof. Their result states

Lemma 4 ([17], Theorem 3.1). Let L ⊂ Rn be a lattice. Then for any c > 1√
2π

and

v ∈ Rn,
ρ
(
(L+ v) \ B(0, c

√
n)
)

ρ(L)
<
(
c
√

2πe e−πc
2)n

. (7)

It is seen that the factor 2 is removed from (5).

Next, we would like to describe a proof of lemma 3 that is different from the

original one given in [2]. We believe that this proof reveals some information that

might be useful in improving the estimation for certain well structured lattices.

Proof of lemma 3∑
x∈L+u

|xk|≥t

e−π‖x‖
2

= e−πt
2
∑

x∈L+u

|xk|≥t

e−π(‖x‖
2−t2) = e−πt

2
∑

x∈L+u

|xk|≥t

e−π((x
2
k−t

2)+
∑
j 6=k x

2
j )

= e−πt
2
∑

x∈L+u

|xk|≥t

e−2πt(|xk|−t)e−π((|xk|−t)
2+

∑
j 6=k x

2
j ) ≤ e−πt

2
∑

x∈L+u

|xk|≥t

e−π((|xk|−t)
2+

∑
j 6=k x

2
j )

= e−πt
2

∑
x∈L+u
xk≥t

e−π((xk−t)
2+

∑
j 6=k x

2
j ) +

∑
x∈L+u
xk≤−t

e−π((xk+t)
2+

∑
j 6=k x

2
j )


≤ e−πt

2

(ρ(L+ (u− tek)) + ρ(L+ (u + tek))) ≤ 2e−πt
2

ρ(L),

where ek is the kth vector of the canonical basis of Rn.

In the last part of this section, we will illustrate a simple form of “uncertainty

principle” for the Fourier transform on lattices. The classical uncertainty principle for

continuous Fourier transform is the following inequality [15] with respect to a rapidly
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decreasing function φ : R→ C :∫ ∞
−∞

x2|φ(x)|2dx
∫ ∞
−∞

ξ2|φ̂(ξ)|2dξ ≥ 1

16π2

∫ ∞
−∞
|φ(x)|2dx

∫ ∞
−∞
|φ̂(ξ)|2dξ

If the function is of the form Ae−Bx
2
, then the uncertainty principle takes equality.

An uncertainty principle for finite Fourier transform was proposed by Donoho and

Stark in [6], they proved that for a cyclic finite group G, if φ : G→ C is a function,

then

|supp(φ)| · |supp(φ̂)| ≥ |G|,

where supp(h) of a function h is its support. If the group is G = Z/pZ for some

prime number p, the Chebotarëv theorem (see [16]) gives a stronger version of the

uncertainty principle

|supp(φ)|+ |supp(φ̂)| ≥ |G|+ 1.

Inspired by the idea of Banaszczyk in his lemma 1.3 of [1], we can prove a simple

version of the uncertainty principle for Gaussian functions on lattices.

Proposition 1. Let L ⊂ Rn be a lattice and s > 0. We have

∑
x∈L

‖x‖2ρs(x)

ρs(L)
+ s4

∑
y∈L̂

‖y‖2ρ 1
s
(y)

ρ 1
s
(L̂)

=
ns2

2π
.

Proof. Let us begin with the Poisson summation formula∑
x∈L

ρs(x) =
sn

vol(Rn/L)

∑
y∈L̂

ρ 1
s
(y).

Write t = s2 and define the function F : R→ R as

F (t) =
∑
x∈L

ρs(x) =
∑
x∈L

e
−π‖x‖2

t .

The Poisson summation formula yields another representation of the function F (t)

F (t) =
sn

vol(Rn/L)

∑
y∈L̂

ρ 1
s
(y) =

√
t
n

vol(Rn/L)

∑
y∈L̂

e−πt‖y‖
2

.
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Differentiating both forms with respect to t, we get equalities

F ′(t) =
π

t2

∑
x∈L

‖x‖2e
−π‖x‖2

t

=
n
√
t
n−2

2vol(Rn/L)

∑
y∈L̂

e−πt‖y‖
2 − π

√
t
n

vol(Rn/L)

∑
y∈L̂

‖y‖2e−πt‖y‖2 .

I.e.,

π
∑
x∈L

‖x‖2ρs(x) + s4π
sn+4

2vol(Rn/L)

∑
y∈L̂

‖y‖2ρ 1
s
(y) =

nsn+2

2vol(Rn/L)

∑
y∈L̂

ρ 1
s
(y).

Dividing both sides by sn

vol(Rn/L)

∑
y∈L̂ ρ 1

s
(y) = sn

vol(Rn/L)
ρ 1
s
(L̂) = ρs(L), we get

what we wanted.

Remarks.

1. For a self-dual lattice L, this proposition implies that the “uncertainty”
∑

x∈L
‖x‖2ρ(x)
ρ(L)

can be precisely determined, i.e.,

∑
x∈L

‖x‖2ρ(x)

ρ(L)
=

n

4π
.

2. A proof can also be obtained by following the nice approach from [1]. By setting

a suitable function and taking second order partial derivatives, the following

interesting relation may be obtained from the proof of lemma 1.3 of [1]

4π2
∑
x∈L

x2kρs(x) =
sn

vol(Rn/L)

∑
y∈L̂

(
2πs2 − 4π2s4y2k

)
ρ 1
s
(y).

3 New Bounds for the Smoothing Parameter

In this section, we shall state and prove our improvement of the upper bound of the

smoothing parameter for lattices. We will first consider the one-dimensional case and

then work on the general case.

3.1 Lattices of Integers

The one-dimensional case L = Z is simpler but it is of great practical importance.

For example, in discrete Gaussian sampling, one usually starts from Z and builds up

things for higher dimensions by using tools such as convolution [10, 12, 13, 18].
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Since Z is self-dual, so

ηε(Z) = min{s : ρ 1
s
(Z) ≤ 1 + ε}.

Notice that ρ 1
s
(Z) = 1 + 2

∑∞
j=1 e

−πs2j2 > 1 + 2e−πs
2
. This implies that for any

ε ∈ (0, 1) and s ≤
√

ln 2
ε

π
, the inequality ρ 1

s
(Z) > 1 + ε holds. Thus

ηε(Z) >

√
ln 2

ε

π
.

One the other hand, any of the general bounds (1), (2), and (3) would give

ηε(Z) ≤

√
ln(2 + 2

ε
)

π
.

Now we have the current bounds for ηε(Z):√
ln 2

ε

π
< ηε(Z) ≤

√
ln(2 + 2

ε
)

π
. (8)

It is an interesting question whether we can get closer to the exact value of ηε(Z).

The purpose of this subsection is to improve the upper bound in (8). First, we should

note that by the Poisson summation formula,

ρs(Z) = sρ 1
s
(Z).

So we may assume s ≥ 1 and assume ε ≤ ρ(Z)− 1 < 0.086435.

The next result says that we can replace the summand 2 inside the natural loga-

rithm in the upper bound of (8) by the “infinitesimal” ε
44

.

Theorem 1. Assume that ε < 0.086435, then

ηε(Z) ≤

√
ln( ε

44
+ 2

ε
)

π
. (9)

Proof. Given ε > 0, consider the polynomial

p(x) = x3 + 22x− 11ε.

Let α = 44ε
88+ε2

. It is easy to check that p(α) < 0. Since p′(x) > 0, so p(x) has

only one real zero. From the fact limx→+∞ p(x) = +∞, we see that p(β) < 0 for any

β ≤ α.
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Let s ≥
√

ln( ε
44

+ 2
ε
)

π
. We have e−πs

2 ≤ α and hence p(e−πs
2
) < 0. In other words,

we have

2

(
e−πs

2

+
1

22
e−3πs

2

)
< ε.

We also observe that e−π < 1
22
− 1

5000
. Therefore

ρ 1
s
(Z) = 1 + 2(e−πs

2

+ e−4πs
2

+ e−9πs
2

+ e−25πs
2

+ e−36πs
2

+ · · · )

≤ 1 + 2(e−πs
2

+ e−πe−3πs
2

+ 2e−9πs
2

)

≤ 1 + 2

(
e−πs

2

+
1

22
e−3πs

2

+ 2e−9πs
2 − 1

5000
e−3πs

2

)
≤ 1 + 2

(
e−πs

2

+
1

22
e−3πs

2

)
< 1 + ε.

This shows that ηε(Z) ≤
√

ln( ε
44

+ 2
ε
)

π
.

Remarks.

1. This bound is much more closer to the exact value of ηε(Z). Under the assump-

tion of the theorem, we have√
ln( ε

44
+ 2

ε
)

π
−

√
ln 2

ε

π
=

ln( ε
44

+ 2
ε
)− ln(2

ε
)√

π ln( ε
44

+ 2
ε
) +

√
π ln 2

ε

<
ε2

528
.

So the new bound is within ε2

528
of the precise value of ηε(Z).

2. Further non-essential improvement of the bound can be achieved by some careful

manipulations.

3.2 General Lattices

In this subsection, we discuss the smoothing parameter for a general n-dimensional

lattice with n ≥ 2. Our aim is to prove an upper bound that is smaller than (3).

Let B = (b1,b2, · · · ,bn) be an arbitrary basis of L. Its Gram-Schmidt orthogonal

basis B∗ = (b∗1, . . . ,b
∗
n) satisfies the relation

B = B∗R

where R = (µij)1≤i,j≤n ∈ Rn×n is an upper triangle matrix with µii = 1 for all

i = 1, · · · , n.
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In [7], Gentry, Peikert, and Vaikuntanathan obtained the following bound on the

smoothing parameter

ηε(L) ≤

√
ln
(
2n+ 2n

ε

)
π

max
i
‖b∗i ‖.

The main purpose of this subsection is to prove a stronger result, namely

ηε(L) ≤

√
ln
(
n− 1 + 2n

ε

)
π

max
i
‖b∗i ‖,

for ε < min{1, 0.086435n}.

To this end, we first establish an inequality.

Lemma 5. Let c > 1 and 0 ≤ x ≤ 6nc

n+ 1 + 2(n− 2)c
(c− 1). Then

(
1 +

x

cn

)n
≤ 1 + x.

Proof.(
1 +

x

cn

)n
= 1 +

x

c
+

1

2

n− 1

n

(x
c

)2
+

1

6

n− 1

n

n− 2

n

(x
c

)3
+

1

24

n− 1

n

n− 2

n

n− 3

n

(x
c

)4
+ · · ·

≤ 1 +
x

c
+
n− 1

2n

(x
c

)2(
1 +

n− 2

3n

(x
c

)
+

(
n− 2

3n

(x
c

))2

+ · · ·

)

≤ 1 +
x

c
+
n− 1

2n

(x
c

)2 1

1− (n−2)x
3nc

= 1 +
x

c

(
1 +

3(n− 1)x

6nc− 2(n− 2)x

)
≤ 1 + x.

We shall also use the fact that for any vector v ∈ Rn,

ρ(L+ v) ≤ ρ(L).

Now let us state our main result.

Theorem 2. If ε < min{1, 0.086435n}, then

ηε(L) ≤

√
ln
(
(n− 1) + 2n

ε

)
π

max
i
‖b∗i ‖.
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Proof. To prove this, let x ∈ L. Then there are integers x1, · · · , xn such that

x = x1b1 + · · ·+ xnbn

= (x1 + µ1,2x2 + · · ·+ µ1,nxn)b∗1 + · · ·+ (xn−1 + µn−1,nxn)b∗n−1 + xnb
∗
n

= (x1 + µ(x2, · · · , xn))b∗1 + · · ·+ (xn−1 + µ(xn))b∗n−1 + xnb
∗
n.

Let si = s
‖b∗i ‖

. We have

ρs(x) = ρsn(xn)ρsn−1(xn−1 + µ(xn)) · · · ρs1(x1 + µ(x2 · · · , xn)).

Therefore

ρs(L) =
∑

x1,··· ,xn∈Z

ρsn(xn)ρsn−1(xn−1 + µ(xn)) · · · ρs1(x1 + µ(x2 · · · , xn))

=
∑

x2,··· ,xn∈Z

ρsn(xn) · · · ρs2(x2 + µ(x3 · · · , xn))
∑
x1∈Z

ρs1(x1 + µ(x2 · · · , xn))

=
∑

x2,··· ,xn∈Z

ρsn(xn) · · · ρs2(x2 + µ(x3 · · · , xn))ρs1(Z + µ(x2 · · · , xn))

≤
∑

x2,··· ,xn∈Z

ρsn(xn)ρsn−1(xn−1 + µ(xn)) · · · ρ2(x2 + µ(x3 · · · , xn))ρs1(Z)

≤ · · · ≤ ρsn(Z)ρsn−1(Z) · · · ρs1(Z).

Using Poisson summation formula, we get

ρ 1
s
(L̂) ≤ ρ 1

s1

(Z)ρ 1
s2

(Z) · · · ρ 1
sn

(Z).

Let k0 be such that ‖b∗k0‖ = maxi ‖b∗i ‖. We have

ρ 1
s
(L̂) ≤

(
ρ ‖b∗

k0
‖

s

(Z)

)n
.

Now consider the equation

X2 −
(

1 +
n− 2

3n
ε

)
X − n+ 1

6n
ε = 0.

This equation has a negative root, so it must have a root c > 1.

Thus

ε =
6nc

n+ 1 + 2(n− 2)c
(c− 1).

By lemma 5, we see that (
1 +

ε

cn

)n
≤ 1 + ε. (10)
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Note that

ε
cn

44
+

2
ε
cn

=
3(c− 1)

22(n+ 1 + 2(n− 2)c)
+

(n+ 1 + 2(n− 2)c)

3c
+

2n

ε

=
3(c− 1)

22(n+ 1 + 2(n− 2)c)
− (n+ 1)(c− 1)

3c
+ (n− 1) +

2n

ε

≤ (n− 1) +
2n

ε
.

If s ≥

√
ln
(
(n−1)+ 2n

ε

)
π

‖b∗k0‖, then

sk0 =
s

‖b∗k0‖
≥

√
ln
(
(n− 1) + 2n

ε

)
π

≥

√
ln
( ε
cn

44
+ 2

ε
cn

)
π

.

Since ε < 0.086435n, so ε
cn
< 0.086435. Therefore, by theorem 1, we conclude

that ρ ‖b∗
k0
‖

s

(Z) ≤ 1 + ε
cn

and hence

ρ 1
s
(L̂) ≤

(
1 +

ε

cn

)n
< 1 + ε.

4 Conclusion

This paper concerns inequalities and parameter for discrete Gaussian measures on

lattices. The first topic of the paper is about an analysis of several seminal results

of Banaszczyk. Some different approaches are suggested, and a simple version of

uncertainty principle is illustrated.

In the second part of the paper we prove two new bounds for the smoothing

parameter of lattices. Under the natural assumption that ε < ρ(Z−{0}), the following

is proved

ηε(Z) ≤

√
ln
(
ε
44

+ 2
ε

)
π

.

This bound is much more closer to the exact value of ηε(Z) with an error at most ε2

528
.

For a general lattice L of high dimension, we obtain that

ηε(L) ≤

√
ln
(
n− 1 + 2n

ε

)
π

b̃l(L).

This improves the bound from [7].
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